345 resultados para Alginate
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Chronic venous disease (CVD) is evident among the chronic diseases and affects the elderly population and primarily is responsible for leg ulcers in this population. The use of dressings in the care of a venous ulcer is a fundamental part of the treatment for healing, however, evidence to assist in choosing the best dressing is scarce. The main objective of this study was to evaluate the effectiveness of treatment with hydrogel in the healing of venous ulcers using search methods, synthesis of information and statistical research through a systematic review and meta-analysis. Randomized controlled trials were selected in the following databases: CENTRAL; DARE; NHS EED; MEDLINE; EMBASE; CINAHL. Beyond these databases three websites were consulted to identify ongoing studies: ClinicalTrials.gov, OMS ICTRP e ISRCTN. The primary outcomes were analyzed: complete wound healing, incidence of wound infection and the secondary were: changes in ulcer size, time to ulcer healing, recurrence of ulcer, quality of life of participants, pain and costs of treatment. Four studies are currently included in the review with a total of 250 participants. The use of hydrogel appears to be superior to conventional dressing, gauze soaked in saline, for the healing of venous leg ulcers; 16/30 patients showed complete healing of ulcers (RR 5,33, 95%CI [1,73,16,42]). The alginate gel was shown to be more effective when compared to the hydrogel dressing in reduction of the wound area; 61,2% (± 26,2%) with alginate e 19,4% (± 24,3%) with hydrogel at the end of four weeks of treatment. Manuka honey has shown to be similar to the hydrogel dressings in percentage of area reduction. This review demonstrated that there is no evidence available about the effectiveness of the hydrogel compared to other types of dressings on the healing of venous leg ulcers of the lower limbs, thus demonstrating the need of future studies to assist health professionals in choosing the correct dressing.
Resumo:
The underground natural gas found associated or not with oil is characterized by a mixture of hydrocarbons and residual components such as carbon dioxide (CO2), nitrogen gas (N2) and hydrogen sulfide (H2S), called contaminants. The H2S especially promotes itself as a contaminant of natural gas to be associated with corrosion of pipelines, to human toxicity and final applications of Natural Gas (NG). The sulfur present in the GN must be fully or partially removed in order to meet the market specifications, security, transport or further processing. There are distinct and varied methods of desulfurization of natural gas processing units used in Natural Gas (UPGN). In order to solve these problems have for example the caustic washing, absorption, the use of membranes and adsorption processes is costly and great expenditure of energy. Arises on such findings, the need for research to active processes of economic feasibility and efficiency. This work promoted the study of the adsorption of sulfide gas in polymer matrices hydrogen pure and modified. The substrates of Poly(vinyl chloride) (PVC), poly(methyl methacrylate) (PMMA) and sodium alginate (NaALG) were coated with vanadyl phosphate compounds (VOPO4.2H2O), vanadium pentoxide (V2O5), rhodamine B (C28H31N2O3Cl) and ions Co2+ and Cu2+, aiming to the adsorption of hydrogen sulfide gas (H2S). The adsorption tests were through a continuous flow of H2S in a column system (fixed bed reactor) adsorption on a laboratory scale. The techniques used to characterize the adsorbents were Infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), X-ray fluorescence (XRF), the X-ray diffraction (XRD) electron microscopy (SEM). Such work indicates, the results obtained, the adsorbents modified PMMA, PVC and NaALG have a significant adsorptive capacity. The matrix that stood out and had the best adsorption capacity, was to ALG modified Co2+ with a score of 12.79 mg H2S / g matrix
Resumo:
A new self-sustainable film was prepared through the sol-gel modified method, previously employed in our research group; sodium alginate was used as the polymer matrix, along with plasticizer glycerol, doped with titanium dioxide (TiO2) and tungsten trioxide (WO3). By varying WO3 concentration (0,8, 1,6, 2,4 and 3,2 μmol) and keeping TiO2 concentration constant (059 mmol), it was possible to study the contribution of these oxides on the obtained films morphological and electrical properties. Self-sustainable films have analyzed by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XDR), Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and Electrochemical Impedance Spectroscopy (EIS). By the IR specters, it was possible identify the TiO2, and posteriorly WO3, addition has provided dislocation of alginate characteristics bands to smaller vibrations frequencies indicating an electrostatic interaction between the oxides and the polymer matrix. Diffractograms show predominance of the amorphous phase in the films. SEM, along with EDX, analysis revealed self-sustainable films showed surface with no cracks and relative dispersion of the oxides throughout the polymer matrix. From Impedance analysis, it was observe increasing WO3 concentration to 2,4 μmol provided a reduction of films resistive properties and consequent improvement of conductive properties
Resumo:
The alginates are copolymers of 1→4-linked β-D-mannuronic acid (M) and α-Lguluronic acid (G) residues that are arranjed in a block structure along a linear chain. Titanium dioxide, TiO2, is a ceramic material and can exist in three distinct crystallography forms: anatase, brookite and rutile. composites of organic and inorganic materials have better properties than the components alone. Thus, this study aims to synthesize, characterize and analyze the composite NaAlg-TiO2 in the form of powder and film. The synthesis of composite powders was performed using the sol-gel process and obtain the composite film was performed using the slow evaporation process, then the composites were analyzed by infrared spectroscopy, fluorescence x ray, thermal analysis, attenuated total reflection (ATR), x ray diffraction and impedance spectroscopy. The X ray diffraction patterns of composite powders show that with increasing calcination temperature, there were no complete transition of rutile-anatase crystalline phase, since at all temperatures studied (300, 500, 700, 900 and 1100ºC) were observed peaks of anatase phase. Thermal analysis shows that at 400°C caused the decomposition of sodium alginate in sodium carbonate and above 600°C, we observe an exothermic peak related to the decomposition of sodium carbonate and in the presence of titanium dioxide becomes sodium titanate. The XRD results confirm the formation of sodium carbonate at 700ºC and the formation sodium titanate in the temperature range 900-1100ºC. The sodium titanate influenced the electrical properties of the material, because with increasing temperature there was a decrease in conductivity, probably due to the creation of Ti vacancies, since the sodium can induce the reduction of surface Ti4+ ions into Ti3+ species. The infrared spectra of the composites in the form of powder and film showed a small shift in the bands compared to the spectrum of pure alginate, indicating that these shifts, even small ones, have evidence of miscibility between the polymer and ceramic material
Resumo:
OBJETIVOS: O presente estudo teve como objetivo cultivar condrócitos retirados da articulação do joelho de coelhos encapsulados em hidrogel de alginato (HA) e caracterizar a produção de matriz extracelular (ECM). MÉTODOS: A cartilagem articular foi removida do joelho de coelhos, com três a seis meses, fragmentada em pedaços de 1mm e submetida à digestão enzimática. Uma concentração de 1x106 céls/mL foram ressuspensas em uma solução de alginato de sódio a 1,5% (w/v), em seguida fez-se o processo de gelatinização em CaCl2 (102 mM), permitindo a formação do HA e cultivo em meio DMEM-F12 durante quatro semanas. A distribuição das células e a ECM foram acessadas através das secções histológicas coradas com e azul de toluidina hematoxilina e eosina (HE). RESULTADOS: Houve um aumento no número e na viabilidade dos condrócitos durante as quatro semanas de cultura. Através das análises histológicas dos HAs corados com azul de toluidina e HE foi possível observar a distribuição definida dos condrócitos no hidrogel, assemelhando-se a grupos isógenos e formação de matriz territorial. CONCLUSÃO: Este estudo demonstrou a eficiência do HA como arcabouço para ser usado na cultura de condrócitos, constituindo uma alternativa no reparo de lesões na cartilagem articular.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Alginate is a biopolymer used for a variety of industrial applications, for example, in the textiles, cosmetics, foods, agricultural and biotechnological industries. This biopolymer is traditionally extracted from some brown seaweeds (Phaeophyceae) and can be produced by bacteria isolated from soil, as Azotobacter vinelandii, like capsular polysaccharide using glucose, sucrose, among others as carbon sources. The main difference between the alginate of seaweed and the bacterial ones, is the biggest degree of acetylation of this last one, with great influence in the gel force. These chemical characteristics and production of bacterial alginate are presented in this work.
Resumo:
The feasibility of using Streptomyces clavuligerus ATCC 27064 bioparticles supported on alginate gel containing alumina to produce clavulanic acid (CA) was investigated. To this end, effectiveness factors for spherical bioparticles, relating respiration rates of immobilised and free cells, were experimentally determined for various dissolved oxygen (DO) levels and bioparticle radii. Monod kinetics was assumed as representative of the oxygen consuming reaction, while internal oxygen diffusion was considered the limiting step. A comparison was made of the results from a tower bioreactor operating under batch, repeated-batch and continuous conditions with immobilised bioparticles. The theoretical curve of the effectiveness factor for the zero-order reaction model, considering an inert nucleus - the dead core model - was very well fitted to the experimental data. The results of the bioprocess indicated that the batch operation was the most efficient and productive, requiring a do concentration in the reactor above 60% of the saturation value. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A desidratação osmótica é uma etapa essencial na elaboração de produtos de fruta através da Tecnologia dos Métodos Combinados ou de Obstáculos (Hurdle Technology), pois reduz a atividade de água para níveis que, combinando um ou mais obstáculos, aumentam a estabilidade do produto. Neste processo há uma perda de água da fruta para a solução e incorporação de sólidos solúveis pelo produto. Este último fluxo é considerado uma desvantagem do processo pois pode alterar o sabor do produto. Neste trabalho estudou-se a ação de revestimentos comestíveis a base de alginato e gelatina aplicados em abacaxis, previamente à desidratação osmótica, como barreira à incorporação de sólidos solúveis. Os abacaxis com e sem revestimento (controle) foram desidratados em solução de sacarose sob condições isotérmicas. Foram determinadas as isotermas de dessorção de abacaxis revestidos com gelatina, alginato e sem revestimento e os parâmetros cinéticos do processo de desidratação osmótica. Abacaxis revestidos com alginato apresentaram menor velocidade de ganho de sólidos, sem alterar a velocidade de perda de água, quando comparado ao controle.
Resumo:
3,4,4'-trichlorocarbanilide (TCC) was rested as a new method of bacterial growth control for S. cerevisiae alcoholic fermentations of diluted high test molasses (HTM). Minimal inhibitory concentration (MIC) was tested to determine the necessary concentration of TCC to control bacterial growth. The fed-batch alcoholic fermentation process was used with cell recycle similar to industrial conditions and Lactobacillus fermentum CCT 1407 was mixed in the first inoculum to grow with the yeast. Yeast extract was added into the must to stimulate bacterial growth. The best results of TCC's MIC to bacterial growth of Lactobacillus fermentum and Leuconostoc mesenteroides (< 0.125-1.0 mu g/ml) and Saccharomyces cerevisiae (16 mu g/ml) occurred when it was combined with sodium dodecylsulphate (SDS) in a 1: 4 TCC/SDS ratio (wt/wt) in distilled water solution. 1.8 g/l TCC entrapped in calcium alginate added to the must with yeast extract inhibited the growth of Lactobacillus fermentum CCT 1407 maintaining a controlled acidity, higher yeast viability and up to 20.8% of improvement in the average of alcoholic efficiency. Addition of 0.075 g/l TCC entrapped in calcium alginate and 1.67 mg/l SDS in the wort with yeast extract (0-5.0 g/l), inhibited and controlled the extensive bacterial contamination for 19 cycles of fermentation. (C) 1998 Published by Elsevier B.V. Ltd.
Resumo:
The industrial production of antibiotics with filamentous fungi is usually carried out in conventional aerated and agitated tank fermentors. Highly viscous non-Newtonian broths are produced and a compromise must be found between convenient shear stress and adequate oxygen transfer. In this work, cephalosporin C production by bioparticles of immobilized cells of Cephalosporium acremonium ATCC 48272 was studied in a repeated batch tower bioreactor as an alternative to the conventional process. Also, gas-liquid oxygen transfer volumetric coefficients, k(L)a, were determined at various air flow-rates and alumina contents in the bioparticle. The bioparticles were composed of calcium alginate (2.0% w/w), alumina (<44 micra), cells, and water. A model describing the cell growth, cephalosporin C production, oxygen, glucose, and sucrose consumption was proposed. To describe the radial variation of oxygen concentration within the pellet, the reaction-diffusion model forecasting a dead core bioparticle was adopted. The k(L)a measurements with gel beads prepared with 0.0, 1.0, 1.5, and 2.0% alumina showed that a higher k(L)a value is attained with 1.5 and 2.0%. An expression relating this coefficient to particle density, liquid density, and air velocity was obtained and further utilized in the simulation of the proposed model. Batch, followed by repeated batch experiments, were accomplished by draining the spent medium, washing with saline solution, and pouring fresh medium into the bioreactor. Results showed that glucose is consumed very quickly, within 24 h, followed by sucrose consumption and cephalosporin C production. Higher productivities were attained during the second batch, as cell concentration was already high, resulting in rapid glucose consumption and an early derepression of cephalosporin C synthesizing enzymes. The model incorporated this improvement predicting higher cephalosporin C productivity. (C) 2004 Wiley Periodicals, Inc.
Resumo:
A clavulanic acid production process with immobilized Streptomyces clavuligerus cells was investigated. Cells were immobilized in diatomaceous earth, calcium alginate gel as well as in the form of natural pellets and cultivated in shake flasks in a medium containing glycerol and soytone as the carbon and nitrogen sources, respectively. In all experiments growth occurred in the first 48 h and glycerol consumption after 72 h, while clavulanic acid production was observed between 48 and 60h, with gradual degradation after this period. The natural pellets presented higher product concentration as compared with the cells immobilized in supports. However, calcium alginate was found to be the best support in relation to cell retention capacity.
Resumo:
Bioprocesses using filamentous fungi immobilized in inert supports present many advantages when compared to conventional free cell processes. However, assessment of the real advantages of the unconventional process demands a rigorous study of the limitations to diffusional mass transfer of the reagents, especially concerning oxygen. In this work, a comparative study was carried out on the cephalosporin C production process in defined medium containing glucose and sucrose as main carbon and energy sources, by free and immobilized cells of Cephalosporium acremonium ATCC 48272 in calcium alginate gel beads containing alumina. The effective diffusivity of oxygen through the gel beads and the effectiveness factors related to the respiration rate of the microorganism were determined experimentally. By applying Monod kinetics, the respiration kinetics parameters were experimentally determined in independent experiments in a complete production medium. The effectiveness factor experimental values presented good agreement with the theoretical values of the approximated zero-order effectiveness factor, considering the dead core model. Furthermore, experimental results obtained with immobilized cells in a 1.7-L tower bioreactor were compared with those obtained in 5-L conventional fermenter with free cells. It could be concluded that it is possible to attain rather high production rates working with relatively large diameter gel beads (ca. 2.5 mm) and sucrose consumption-based productivity was remarkably higher with immobilized cells, i.e., 0.33 gCPC/kg sucrose/h against 0.24 gCPC/kg sucrose/h in the aerated stirred tank bioreactor process. (C) 1999 John Wiley & Sons, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)