968 resultados para Algebraic Integers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extended gcd calculation has a long history and plays an important role in computational number theory and linear algebra. Recent results have shown that finding optimal multipliers in extended gcd calculations is difficult. We present an algorithm which uses lattice basis reduction to produce small integer multipliers x(1), ..., x(m) for the equation s = gcd (s(1), ..., s(m)) = x(1)s(1) + ... + x(m)s(m), where s1, ... , s(m) are given integers. The method generalises to produce small unimodular transformation matrices for computing the Hermite normal form of an integer matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new model for correlated electrons is presented which is integrable in one-dimension. The symmetry algebra of the model is the Lie superalgebra gl(2\1) which depends on a continuous free parameter. This symmetry algebra contains the eta pairing algebra as a subalgebra which is used to show that the model exhibits Off-Diagonal Long-Range Order in any number of dimensions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A t - J model for correlated electrons with impurities is proposed. The impurities are introduced in such a way that integrability of the model in one dimension is not violated. The algebraic Bethe ansatz solution of the model is also given and it is shown that the Bethe states are highest weight states with respect to the supersymmetry algebra gl(2/1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integrable Kondo impurities in the one-dimensional supersymmetric U model of strongly correlated electrons are studied by means of the boundary graded quantum inverse scattering method. The boundary K-matrices depending on the local magnetic moments of the impurities are presented as non-trivial realizations of the reflection equation algebras in an impurity Hilbert space. Furthermore, the model Hamiltonian is diagonalized and the Bethe ansatz equations are derived. It is interesting to note that our model exhibits a free parameter in the bulk Hamiltonian but no free parameter exists on the boundaries. This is in sharp contrast to the impurity models arising from the supersymmetric t-J and extended Hubbard models where there is no free parameter in the bulk but there is a free parameter on each boundary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An extension of the supersymmetric U model for correlated electrons is given and integrability is established by demonstrating that the model can he constructed through the quantum inverse scattering method using an R-matrix without the difference property. Some general symmetry properties of the model are discussed and from the Bethe ansatz solution an expression for the energies is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An integrable Kondo problem in the one-dimensional supersymmetric extended Hubbard model is studied by means of the boundary graded quantum inverse scattering method. The boundary K-matrices depending on the local moments of the impurities are presented as a non-trivial realization of the graded reflection equation algebras in a two-dimensional impurity Hilbert space. Further, the model is solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new integrable model for correlated electrons which is based on so(5) symmetry. By using an eta-pairing realization we construct eigenstates of the Hamiltonian with off-diagonal long-range order. It is also shown that these states lie in the ground state sector. We exactly solve the model on a one-dimensional lattice by the Bethe ansatz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We shall study continuous-time Markov chains on the nonnegative integers which are both irreducible and transient, and which exhibit discernible stationarity before drift to infinity sets in. We will show how this 'quasi' stationary behaviour can be modelled using a limiting conditional distribution: specifically, the limiting state probabilities conditional on not having left 0 for the last time. By way of a dual chain, obtained by killing the original process on last exit from 0, we invoke the theory of quasistationarity for absorbing Markov chains. We prove that the conditioned state probabilities of the original chain are equal to the state probabilities of its dual conditioned on non-absorption, thus allowing us to establish the simultaneous existence and then equivalence, of their limiting conditional distributions. Although a limiting conditional distribution for the dual chain is always a quasistationary distribution in the usual sense, a similar statement is not possible for the original chain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We construct, for all positive integers u, and v with u less than or equal to v, a decomposition of K-v - K-u (the complete graph on v vertices with a. hole of size u) into the maximum possible number of edge disjoint triangles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is devoted to the problems of finding the load flow feasibility, saddle node, and Hopf bifurcation boundaries in the space of power system parameters. The first part contains a review of the existing relevant approaches including not-so-well-known contributions from Russia. The second part presents a new robust method for finding the power system load flow feasibility boundary on the plane defined by any three vectors of dependent variables (nodal voltages), called the Delta plane. The method exploits some quadratic and linear properties of the load now equations and state matrices written in rectangular coordinates. An advantage of the method is that it does not require an iterative solution of nonlinear equations (except the eigenvalue problem). In addition to benefits for visualization, the method is a useful tool for topological studies of power system multiple solution structures and stability domains. Although the power system application is developed, the method can be equally efficient for any quadratic algebraic problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three kinds of integrable Kondo problems in one-dimensional extended Hubbard models are studied by means of the boundary graded quantum inverse scattering method. The boundary K matrices depending on the local moments of the impurities are presented as a nontrivial realization of the graded reflection equation algebras acting in a (2s alpha + 1)-dimensional impurity Hilbert space. Furthermore, these models are solved using the algebraic Bethe ansatz method, and the Bethe ansatz equations are obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Yang-Mills-Higgs field generalizes the Yang-Mills field. The authors establish the local existence and uniqueness of the weak solution to the heat flow for the Yang-Mills-Higgs field in a vector bundle over a compact Riemannian 4-manifold, and show that the weak solution is gauge-equivalent to a smooth solution and there are at most finite singularities at the maximum existing time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multiparametric extension of the anisotropic U model is discussed which maintains integrability. The R-matrix solving the Yang-Baxter equation is obtained through a twisting construction applied to the underlying U-q(sl (2/1)) superalgebraic structure which introduces the additional free parameters that arise in the model. Three forms of Bethe ansatz solution for the transfer matrix eigenvalues are given which we show to be equivalent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integrable Kondo impurities in two cases of one-dimensional q-deformed t-J models are studied by means of the boundary Z(2)-graded quantum inverse scattering method. The boundary K matrices depending on the local magnetic moments of the impurities are presented as nontrivial realizations of the reflection equation algebras in an impurity Hilbert space. Furthermore, these models are solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained.