273 resultados para Alfalfa enamovirus1 (AEV1)
Resumo:
"Cornstalk disease" is the name given to the cause or causes of death of cattle allowed to run in fields of standing cornstalks from which the ears have been gathered. It is probable that "many different maladies have been included under this name." In Nebraska, however, there is such a similarity in the symptoms reported by the farmers that it seems probable that the great majority of the losses attributed to cornstalk disease are really due to some common cause. As to the exact nature of this cause nothing is known. However, various theories have been advanced, and methods of prevention or treatment based upon these theories have been described.
Resumo:
The agricultural lands of this country are its greatest natural resource. History points out that nations with vast areas of good farm land are most likely to prosper and survive over long periods of time. Local communities, too, prosper and flourish in proportion to the productiveness of the surrounding land. Schools, social life, and business develop best in areas where the land is productive and properly managed and conserved. Nebraska, in common with other states, has suffered by the depletion of soil fertility. The reduction in acres in legumes and grasses, and the deplation of the organic matter in the surface soils, has likewise had its effect on the run-off of precipitation, soil blowing, and damage from drouth. In order to know what elements of fertility may become deficient and how soil fertility may be restored and maintained, we should understand the composition, character, and management of soils. In the following pages, some fundamentals of soil feritlity are given, followed later by a discussion of practical soil-management practices.
Resumo:
Corn is Nebraska's most important crop. Of the nearly 19 million acres under cultivation in the state, over 10 million acres or more than 50 percent is normally planted to corn. This is three times the acreage of wheat, four times that of oats, and ten times that of barley. The 10-year average acre yield of corn for this state is 25.8 bushels compared with 26.9 bushels for the entire United States. Nebraska, with an average annual crop of approximately 258 million bushels, usually ranks third among all states in the total production of corn, being exceeded by Iowa and Illinois. This 1933 extension circular discusses the importance of corn, seed, varieties of corn, freezing injury, testing seed corn, hybrid corn, soil fertility and rotation, cultural practices, harvesting and storing corn, power machinery in relation to costs in corn production, corn diseases and insects, and utilization of corn.
Resumo:
We conducted a comprehensive research project on elk in the Pine Ridge region of northwestern Nebraska from 1995 to 2002 to determine ecological factors that could be used to improve management and reduce damage. The population ranged from 120 to 150 animals, with an average calf:cow ratio of 0.5:1 and bull:cow ratio of 0.4:1. We located 21 radio-collared female elk 6,311 times during 1995 to 1997. Seasonal home ranges of 2 herds were 10 and 44 km2, while average annual home ranges of the herds were much larger (483 and 440 km2, respectively). All wintering areas (n = 21) and 80% of the calving areas (n = 22) were located on privately-owned land. Active timber harvest temporarily displaced elk, most notably during the calving season. Elk shifted home ranges in association with the seasonal availability of agricultural crops, in particular, alfalfa, oats, and winter wheat. Population models indicated that static levels of hunting mortality would lead to a stable population of about 130 elk over 10 years. Most landowners in the Pine Ridge (57%) favored free-ranging elk, but 26% were concerned about damage to agricultural crops and competition with livestock. Habitat suitability models and estimates of social carrying capacity indicate that up to 600 elk could be sustained in the Pine Ridge without significant impacts to landowners. We recommended an integrated management program used to enhance elk habitat on publicly-owned land and redistribute elk from privately-owned land.
Resumo:
During ethanol production, starch is the primary nutrient fermented and the remaining byproducts are excellent sources of fiber and protein. In addition, inclusion of byproducts in finishing diets may reduce the incidence of acidosis. As a result, roughage level and quality could potentially be reduced in finishing diets containing byproducts. Three experiments were conducted to examine the effects of roughage and wet corn gluten feed (WCGF) in finishing cattle diets containing corn distillers grains plus solubles. Cattle fed finishing diets containing wet distillers grains plus solubles (WDGS) with no roughage had decreased DMI and ADG compared to cattle fed roughage. Within roughage level, ADG was similar for cattle fed alfalfa hay, corn silage or corn stalks when included on an equal NDF basis. Apparent total tract digestibility of OM, NDF, and CP linearly decreased and ruminal pH variables increased linearly due to increasing roughage levels. Roughage sources can be exchanged on an equal NDF basis in beef finishing diets containing 30% WDGS (DM basis). In finishing diets containing modified distillers grains plus solubles (MDGS), DMI linearly increased due to increasing roughage levels but ADG responded quadratically and was lowest for cattle fed diets without roughage. There was also a quadratic response for DMI and ADG due to WCGF inclusion level. Gain:feed decreased linearly with increasing roughage and WCGF inclusion levels. Feeding 15% WCGF resulted in similar cattle performance and carcass traits to cattle fed no WCGF in diets containing 30% MDGS, but cattle fed diets with 60% total byproduct inclusion made up of 30% WCGF and 30% MDGS had reduced performance (DM basis). Additionally, reducing corn silage inclusion level to 7.5% resulted in similar finishing cattle performance and carcass traits to cattle fed 15% corn silage in diets containing 30% MDGS with or without inclusion of WCGF. Elimination of roughage in diets containing either WDGS or MDGS resulted in negative impacts on finishing cattle performance, ruminal metabolism, and carcass traits.
Resumo:
This NebGuide describes the life cycle of the army cutworm and pale western cutworm, and provides recommendations for management.The army cutworm, Euxoa auxiliaris, and the pale western cutworm, Agrotis orthogonia, are sporadic pests that are distributed throughout the Great Plains. The army cutworm can be found throughout Nebraska, but is more common in the western half of the state. Because of the drier environment, the pale western cutworm is found only in the western third of Nebraska. Both cutworms can feed on a vast array of crops and weeds. Their major economic impact is limited to winter wheat and alfalfa, because these are the vulnerable crops growing in the early spring when larval feeding activity occurs. However, they can also cause substantial damage to early spring row crops (sugarbeets and corn), especially in areas where winter cereal cover crops are used.
Resumo:
The badger (Taxidea taxus). because of its strong propensity for digging, is considered North America's fossorial carnivore, feeding mostly on ground squirrels, pocket gophers, and mice throughout much of the western and midwestern continent. Badger excavations, primarily in search of food, produce mounds and deep holes which can damage alfalfa and other crops and damage farm equipment and water systems. Depredations include poultry, waterfowl, and eggs. Overall, the badger is considered a relatively minor vertebrate pest. As a furbearer it is considered a renewable natural resource. Most local pest problems are currently reduced through leghold trapping and shooting. Habitat modification through continuous rodent control is effective and a long-lasting badger control method.
Resumo:
BACKGROUND: Cellulose and hemicellulose are quantitatively the most important structural carbohydrates present in ruminant diets. Rumen micro-organisms produce enzymes that catalyse their hydrolysis, but the complex network formed by structural carbohydrates and lignin reduces their digestibility and restricts efficient utilisation of feeds by ruminants. This study aimed to produce two enzymatic extracts, apply them in ruminant diets to determine the best levels for ruminal digestibility and evaluate their effects on in vitro digestibility. RESULTS: In experiment 1 a two-stage in vitro technique was used to examine the effects of different enzymatic levels of Aspergillus japonicus and Aspergillus terricola on tropical forages. Enzyme addition had minor effects on corn silage at the highest enzymatic level. In experiment 2 an in vitro gas production (GP) technique was applied to determine apparent in vitro organic matter digestibility and metabolisable energy. The addition of enzymes in GP showed interesting results. Good data were obtained using sugar cane and Tifton-85 hay supplemented with extracts of A. japonicus and A. terricola respectively. CONCLUSION: Overall, the study suggests that addition of crude extracts containing exogenous fibrolytic enzymes to ruminant diets enhances the effective utilisation of ruminant feedstuffs such as forages. Copyright (c) 2012 Society of Chemical Industry
Resumo:
A digestibility trial, utilizing eight crossbred steers weighing initially 741 lbs. was conducted in an 8 x 8 Latin square design. High-fiber corn by-products were compared with corn as energy sources when fed in mixed diets with either lowor high-quality forage. Ground, dry corn stover and ground alfalfa hay were both fed alone or with corn grain, dried corn gluten feed (CGF), and dried corn distillers grains plus solubles (DDG) in a 1:1 ratio (dry basis). Total tract dry matter digestibility (DMD) was increased for both forages when fed with concentrates. Total tract DMD was similar in stover-based and alfalfa-based diets fed with CGF and DDG. However, stover+corn was lower in DMD than either stover+CGF and stover+DDG. Conversely, alfalfa+corn was higher in DMD than alfalfa+CGF or alfalfa+DDG. Feeding stover with corn tended to decrease digestibility of neutral detergent fiber (NDF), while feeding stover with CGF or DDG increased NDFD. There was no effect upon NDF digestion of alfalfa-based diets when fed with any of the concentrates. Feeding either forage with a concentrate increased digestible energy (DE). Stover+CGF and stover+DDG were similar in DE and were both higher in DE than stover+corn. Alfalfa+DDG tended to be higher than alfalfa+CGF and was similar to alfalfa+corn in DE. Alfalfa+CGF was lower in DE compared with alfalfa+corn. Results are interpreted to indicate that stover is more susceptible to negative feed interactions caused by corn grain than is alfalfa. Additionally, highfiber corn co-products fed with stover resulted in a positive associative effect but essentially had no associative effect when fed with alfalfa.
Resumo:
A 3-year study, using 84 fall-born and 28 spring-born calves of similar genotypes, was conducted to integrate pasturing systems with drylot feeding systems. Calves were started on test following weaning in May and October. Seven treatments were imposed: 1) fall-born calves directly into feedlot; 2 and 3) fall-born calves put on pasture with or without ionophore and moved to the feedlot at the end of July; 4 and 5) fall-born calves put on pasture with or without ionophore and moved to the feedlot at the end of October; 6 and 7) spring-born calves put on pasture with or without ionophore and moved to the feedlot at the end of October. A bromegrass pasture consisting of 16 paddocks, each 1.7 acre in size, was available. Each treatment group had access to 1 paddock at a time and was rotated at approximately 3-day intervals. In the feedlot, steers were provided an 82% concentrate diet containing whole-shelled corn, ground alfalfa hay, and a protein, vitamin and mineral supplement containing ionophore and molasses. As pens of cattle reached about 1150 lb. average live weight, they were processed and carcass traits were evaluated. Pasture daily gains were highest for cattle on pasture for the longest duration (P < .03), and overall daily gains were highest for drylot cattle (P < .01) and decreased with increased time spent on pasture. Although differences among treatments existed in numerical scores for yield and quality grades (P < .05 and P < .03, respectively), all treatments provided average yield grade scores of 2 and quality grades of low Choice or higher. Use of four production costs and pricing scenarios revealed that fall-born calves placed on pasture for varying lengths of time were the most profitable (P < .04) among the treatments. Furthermore, employing a 5% price sensitivity analysis, indicated that fed-cattle selling price had great impact on profit potential and was followed in importance by feeder purchase price and corn grain price. Overall, these findings should provide significant production alternatives for some segments of the cattle feeding industry and also lend substantial credence to the concept of sustainable agriculture.
Resumo:
Economic comparisons of income on highly erodible land (HEL) in Adams County were made utilizing five years of grazing data collected from a 13- paddock intensive-rotational grazing system and a four-paddock rotational-grazing system and four years of data collected from an 18-paddock intensive-rotational grazing system, all at the Adams County CRP Research and Demonstration Farm near Corning. Net income from the average grazing weight-gain of Angus-sired calves nursing crossbred cows was compared to the net income from grazing yearling steers, to the net income of eight NRCS-recommended crop rotations, and to the Conservation Reserve Program (CRP) option. Results of these comparisons show the 13-paddock intensive rotational grazing system with cow-calf pairs to be the most profitable alternative, with a net return of $19.86 per acre per year. The second most profitable alternative is the CRP option, with a net return of $13.09 per acre, and the third most profitable option is the fourpaddock rotation with cows and calves with a net return of $12.53 per acre. An 18-paddock system returned a net income of $2.47 per acre per year with cows and calves in 1993, but lost an average of $107.69 per acre each year in 1994 and 1995 with yearling steers. Each year, the steers were purchased high and sold low, contributing to the large loss per acre. The following recommended crop rotations all show net losses on these 9-14 % slope, Adair-Shelby Complex soils (ApD3): continuous corn; corn-soybean rotation; corn-soybean rotation with a farm program deficiency payment; corn-corn-corn-oats-meadow-meadow rotation with grass headlands; continuous corn to “T” with grass headlands and buffer strips; continuous corn to “T” with grass headlands, buffer strips, and a deficiency payment; corn-corn-oats-meadow rotation to “T”; and corn-soybeans-oats-meadow-meadow-meadow-meadow rotation to “T”. Per-acre yield assumptions of 90 bushels for corn, 30 bushels for soybeans, 45 bushels for oats, and four tons for alfalfa were used, with per-bushel prices of $2.40 on corn, $5.50 on soybeans, and $1.50 on oats. Alfalfa hay was priced at $40.00 per ton and grass hay at $33.33 per ton. The calf weight-gain in the cow/ calf systems was valued at $.90 per pound. All crop expenses except land costs were calculated from ISU publication Fm 1712, “Estimated Costs of Crop Production in Iowa - 1995.” Land costs were determined by using an opportunity cost and actual property tax figures for the land at the grazing site. In preparation for the end of the CRP beginning in 1996, further economic comparisons will be made after additional grazing seasons and data collection. This project is an interagency cooperative effort sponsored by the Southern Iowa Forage and Livestock Committee which has special permission from the USDA Farm Service Agency (FSA) to use CRP land for research and demonstration.
Resumo:
In a three year study, wintering systems utilizing the grazing of stockpiled perennial hay crop forages or corn crop residues were compared to maintaining cows in a drylot. In the summer of 1992, two cuttings of hay were harvested (June 22 and August 2) from three 10-acre fields containing “Johnstone” endophyte-free tall fescue and “Spreador II” alfalfa, and one cutting of hay was harvested from three 10- acre fields of smooth brome grass. “Arlington” red clover was frost-seeded into the smooth bromegrass fields in 1993 and into tall fescue-alfalfa and smooth bromegrass fields into 1994. Two cuttings of hay were harvested from all fields in subsequent years, and three-year average hay yields for tall fescue-alfalfa and smooth bromegrass-red clover were 4,336 and 3,481 pounds per acre, respectively. Regrowth of the forage following the August hay harvest of each year was accumulated for winter grazing. Following a killing frost in each year, two fields of each stockpiled forage were stocked with cows in midgestation at two acres per cow. Two 10-acre fields of corn crop residues were also stocked at two acres per cow, following the grain harvest. Mean dry matter forage yields at the initiation of grazing were 1,853, 2,173 and 5,797 pounds per acre for fields containing tall fescue-alfalfa, smooth bromegrass-red clover, and cornstalks, respectively. A drylot was stocked with 18 cows in 1992 and 1993 and 10 cows in 1994. All cows were fed hay as necessary to maintain a body condition score of five. During grazing, mean losses of organic matter were -6.4, -7.6, and -10.7 pounds per acre per cow from tall fescue-alfalfa, smooth bromegrass-red clover, and cornstalk fields. Average organic matter loss rates from stockpiled forages due to weathering alone were equal to only 30% of the weathering losses of the corn crop residues. In vitro digestibility of both stockpiled forages and cornstalks decreased at equal rates during grazing each year, with respective annual loss rates of .14, .08, and .06% per day. Cows grazing corn crop residues required an average of 1,321 pounds per cow less hay than cows maintained in the drylot to maintain equivalent body condition during the grazing season. Cows grazing tall fescue-alfalfa or smooth bromegrass-red clover had body weight gains and condition score changes equal to cows maintained in a drylot but required 64% and 62% less harvested hay than cows in the drylot during the grazing season. Over the entire stored forage cows grazing tall fescue-alfalfa and smooth bromegrass-red clover required an average of 2,390 and 2,337 pounds per cow less than those maintained in the drylot. Because less hay was needed to maintain cows grazing stockpiled forages, average annual excesses of 5,629 and 3,868 pounds of hay dry matter per cow remained in the stockpiled tall fescue-alfalfa and smooth bromegrass-red clover systems.
Resumo:
Alfalfa, smooth bromegrass, and big bluestem hays harvested at two maturities differing by four weeks were fed at mature-to-immature hay ratios of 1:0, 2:1, 1:2, and 0:1 to yearling heifers in an experiment with a three 4 x 4 Latin square design with 14 day periods. Concentrations of in vitro digestible dry matter and crude protein were greater and concentrations of neutral detergent fiber, acid detergent fiber, and indigestible neutral detergent fiber (determined by either a manual method with a 96 hour incubation or an automated method with a 48 hour incubation) were less in alfalfa hay than in the two grass hays and in smooth bromegrass hay than in big bluestem hay. Concentrations of in vitro digestible dry matter and crude protein decreased whereas those of neutral detergent fiber, acid detergent fiber and indigestible neutral detergent fiber increased with increasing forage maturity. Consumptions of dry matter, digestible dry matter, in vitro digestible dry matter, and crude protein were greater for heifers fed alfalfa hay diets than those fed the two grasses. Consumptions of total neutral detergent fiber and indigestible neutral detergent fiber, determined by the automated method with a 48 hour incubation, were greater by heifers fed diets containing big bluestem than those fed alfalfa or smooth bromegrass diets. Consumptions of acid detergent fiber and indigestible neutral detergent fiber, determined by a manual method with a 96 hour incubation, were greater for heifers fed alfalfa or big bluestem hay diets than those of heifers fed smooth bromegrass diets. Consumption of dry matter, in vivo or in vitro digestible dry matter, crude protein, neutral detergent fiber, acid detergent fiber and automated indigestible neutral detergent fiber decreased as the mature-to-immature hay ratio decreased. Diet digestibility was not affected by forage species, but increased as the mature-toimmature hay ratio decreased. Fecal excretion of dry matter and neutral detergent fiber did not differ between forage species or mature-to-immature hay ratios. Forage dry matter intake expressed as a percentage of body weight was significantly related to the concentrations of in vitro digestible dry matter (r2=.14), crude protein (r2=.17), neutral detergent fiber (r2=.20), and manual indigestible neutral detergent fiber (r2=.18) of the hays and the concentration of digestible dry matter of the diets (r2=.43).
Resumo:
An in situ study was conducted to evaluate the effects of heat treatments on the degradation kinetics and escape protein concentrations of forages (alfalfa and berseem clover). Alfalfa collected at 4 and 7 weeks post-harvest and berseem clover collected at 5 and 7 weeks postharvest were freeze-dried and then heated to 100, 125, and 150o C for 2 hours. Heat treatment effects were determined by placing two bags of sample (for each treatment, maturity, and forage species for a given incubation times) into the rumen of one fistulated steer fed alfalfa hay. Bags were incubated for periods of 0 to 48 hours. Increasing levels of heat treatments of forages increased concentrations of neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent insoluble nitrogen (ADIN) and non-degradable protein (NDP), potentially degradable protein proportion (PDP), and protein escaping rumen degradation (PEP) while decreasing water soluble protein (WSP) and the rates of crude protein (CP), except immature berseem clover and cell wall (CW) degradation. PEP was greater and rate of CP degradation was lower at 100 and 150o C compared to 125o C in immature berseem clover.
Resumo:
Two consecutive in situ studies were conducted to determine the effects of maturity and frost killing of forages (alfalfa and berseem clover) on degradation kinetics and escape protein concentrations. Four maturities (3, 5, 7, and 9 weeks after second harvest) of forages collected from three locations were used to determine the effects of maturity. Four weeks after a killing frost (-2o C), berseem clover was harvested from the same locations previously sampled. To evaluate maturity, 336 DacronÒ bags containing all maturities of either alfalfa or berseem clover were placed into the rumen of two fistulated steers fed alfalfa-grass hay. Frost killing effects of berseem clover were compared with maturecut berseem clover by placing DacronÒ bags into the rumen of one fistulated steer fed alfalfa hay. Bags were incubated for periods of 0 to 48 hours. With increasing maturity, the proportion of non-degradable protein (NDP) and the rate of crude protein (CP) degradation increased in both forages. While the rate of neutral detergent fiber (NDF) degradation and potentially degradable protein proportion (PDP) increased with increasing maturity in alfalfa, the rate of NDF degradation and PDP proportion decreased and proportion of water soluble protein (WSP) increased in berseem clover. The proportion of protein escaping rumen degradation (PEP) was greater in berseem clover than alfalfa, but was not affected by maturity. Frost killing of mature berseem clover decreased WSP proportion and increased PDP proportion compared to mature berseem clover harvested live. Even though ADIN concentration was higher for frost-killed berseem clover, PEP and total escape protein concentration (CEP) was also higher for frostkilled berseem clover than mature berseem clover harvested live, due to decreases in the rate of ruminal N degradation with frost-killing.