981 resultados para Alaska-Bering-Chukchi_Sea


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Upper Paleocene–Eocene boulder conglomerate, cross-stratified sandstone, and laminated carbonaceous mudstone of the Arkose Ridge Formation exposed in the southern Talkeetna Mountains record fluvial-lacustrine deposition proximal to the volcanic arc in a forearc basin modified by Paleogene spreading ridge subduction beneath southern Alaska. U-Pb ages of detrital zircon grains and modal analyses were obtained from stratigraphic sections spanning the 2,000 m thick Arkose Ridge Formation in order to constrain the lithology, age, and location of sediment sources that provided detritus. Detrital modes from 24 conglomerate beds and 54 sandstone thin sections aredominated by plutonic and volcanic clasts and plagioclase feldspar with minor quartz, schist, hornblende, argillite, and metabasalt. Westernmost sandstone and conglomerate strata contain <5% volcanic clasts whereas easternmost sandstone and conglomerate strata contain 40 to >80% volcanic clasts. Temporally, eastern sandstones andconglomerates exhibit an upsection increase in volcanic detritus from <40 to >80% volcanic clasts. U-Pb ages from >1400 detrital zircons in 15 sandstone samples reveal three main populations: late Paleocene–Eocene (60-48 Ma; 16% of all grains), Late Cretaceous–early Paleocene (85–60 Ma; 62%) and Jurassic–Early Cretaceous (200–100 Ma; 12%). A plot of U/Th vs U-Pb ages shows that >97% of zircons are <200 Ma and>99% of zircons have <10 U/Th ratios, consistent with mainly igneous source terranes. Strata show increased enrichment in late Paleocene–Eocene detrital zircons from <2% in the west to >25% in the east. In eastern sections, this younger age population increases temporally from 0% in the lower 50 m of the section to >40% in samples collected >740 m above the base. Integration of the compositional and detrital geochronologic data suggests: (1) Detritus was eroded mainly from igneous sources exposed directly north of the Arkose Ridge Formation strata, mainly Jurassic–Paleocene plutons and Paleocene–Eocenevolcanic centers. Subordinate metamorphic detritus was eroded from western Mesozoic low-grade metamorphic sources. Subordinate sedimentary detritus was eroded from eastern Mesozoic sedimentary sources. (2) Eastern deposystems received higher proportions of juvenile volcanic detritus through time, consistent with construction of adjacent slab-window volcanic centers during Arkose Ridge Formation deposition. (3)Western deposystems transported detritus from Jurassic–Paleocene arc plutons that flank the northwestern basin margin. (4) Metasedimentary strata of the Chugach accretionaryprism, exposed 20-50 km south of the Arkose Ridge Formation, did not contribute abundant detritus. Conventional provenance models predict reduced input of volcanic detritus to forearc basins during exhumation of the volcanic edifice and increasing exposure ofsubvolcanic plutons (Dickinson, 1995; Ingersoll and Eastmond, 2007). In the forearc strata of these conventional models, sandstone modal analyses record progressive increases upsection in quartz and feldspar concomitant with decreases in lithic grains, mainly volcanic lithics. Additionally, as the arc massif denudes through time, theyoungest detrital U-Pb zircon age populations become significantly older than the age of forearc deposition as the arc migrates inboard or ceases magmatism. Westernmost strata of the Arkose Ridge Formation are consistent with this conventional model. However, easternmost strata of the Arkose Ridge Formation contain sandstone modes that record an upsection increase in lithic grains accompanied by a decrease in quartz and feldspar, and detrital zircon age populations that closely match the age of deposition. This deviation from the conventional model is due to the proximity of the easternmost strata to adjacent juvenile volcanic rocks emplaced by slab-window volcanic processes. Provenance data from the Arkose Ridge Formation show that forearc basins modified by spreading ridge subduction may record upsection increases in non-arc, syndepositional volcanic detritusdue to contemporaneous accumulation of thick volcanic sequences at slab-window volcanic centers. This change may occur locally at the same time that other regions of the forearc continue to receive increasing amounts of plutonic detritus as the remnant arc denudes, resulting in complex lateral variations in forearc basin petrofacies and chronofacies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the first detailed study of the westernmost portion of the outcrop belt, which extends along the western flank of the Talkeetna Mountains and includes thick, well-exposed outcrops along Willow Creek in the eastern Susitna basin. New sedimentologic, compositional, and geochronologic data were obtained from stratigraphic sections within Arkose Ridge Formation strata at Willow Creek. This data combined with new geologic mapping and geochronologic data from Willow Bench and Kashwitna River Bluff (north of Willow Creek), and from the Government Peak area (east of Willow Creek), help constrain depositional processes and source terranes that provided detritus to the westernmost Arkose Ridge Formation strata.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Icy debris fans have are newly-described landforms (Kochel and Trop, 2008 and 2012) as landforms developed immediately after deglaciation on Earth and similar features have been observed on Mars. Subsurface characteristics of Icy debris fans have not been previously investigated. Ground penetrating radar (GPR) was used to non-invasively investigate the subsurface characteristics of icy debris fans near McCarthy, Alaska, USA. The three fans investigated in Alaska are the East, West, and Middle fans (Kochel and Trop, 2008 and 2012) which below the Nabesna ice cap and on top of the McCarthy Creek Glacier. Icy debris fans in general are a largely unexplored suite of paraglacial landforms and processes in alpine regions. Recent field studies focused on direct observations and depositional processes. Their results showed that the fan's composition is primarily influenced by the type and frequency of depositional processes that supply the fan. Photographic studies show that the East Fan receives far more ice and snow avalanches whereas the Middle and West Fans receive fewer mass wasting events but more clastic debris is deposited on the Middle and West fan from rock falls and icy debris flows. GPR profiles and Wide-angle reflection and refraction (WARR) surveys consisting of both, common mid-point (CMP), and common shot-point (CSP) surveys investigated the subsurface geometry of the fans and the McCarthy Creek Glacier. All GPR surveys were collected in July of 2013 with 100MHz bi-static antennas. Four axial profiles and three cross-fan profiles were done on the West and Middle fans as well as the McCarthy Creek Glacier in order to investigate the relationship between the three features. GPR profiles yielded reflectors that were continuous for 10+ m and hyperbolic reflections in the subsurface. The depth to these reflections in the subsurface requires knowledge of the velocity of the subsurface. To find the velocity of the subsurface eight WARR surveys collected on the fans and on the McCarthy Creek glacier to provide information on variability of subsurface velocities. The profiles of the Middle and West fan have more reflections in their profiles compared to profiles done on the McCarthy Creek Glacier. Based on the WARR surveys, we interpret the lower energy return in the glacier to be caused by two reasons. 1) The increased attenuation due to wet ice versus drier ice and on the fan with GPR velocities >0.15m/ns. 2) Lack of interfaces in the glacier compared to those in the fans which are inferred to be produced by the alternating layers of stratified ice and lithic-rich layers. The GPR profiles on the West and Middle Fans show the shallow subsurface being dominated by lenticular reflections interpreted to be consistent with the shape of surficial deposits. The West Fan is distinguished from the Middle Fan by the nature of its reflections patterns and thicknesses of reflection packages that clearly shows the Middle fan with a greater thickness. The changes in subsurface reflections between the Middle and West Fans as well as the McCarthy Creek Glacier are thought to reflect the type and frequency of depositional processes and surrounding bedrock and talus slopes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paleogene sedimentary rocks of the Arkose Ridge Formation (Talkeetna Mountains, Alaska) preserve a record of a fluvial-lacustrine depositional environment and its forested ecosystem in an active basin among the convergent margin tectonic processes that shaped southern Alaska. An -800 m measured succession at Box Canyon indicates braid-plain deposition with predominantly gravelly deposits low in the exposure to sandy and muddy facies associations below an overlying lava flow sequence. U-Pb geochronology on zircons from a tuff and a sandstone within the measured section, as well as an Ar/Ar date from the overlying lava constrain the age of the sedimentary succession to between similar to 59 Ma and 48 Ma Fossil plant remains occur throughout the Arkose Ridge Formation as poorly-preserved coalified woody debris and fragmentary leaf impressions. At Box Canyon, however, a thin la-custrine depositional lens of rhythmically laminated mudrocks yielded fish fossils and a well-preserved floral assemblage including foliage and reproductive organs representing conifers, sphenopsids, monocots, and dicots. Leaf physiognomic methods to estimate paleoclimate were applied to the dicot leaf collection and indicate warm temperate paleotemperatures (-11-15 +/- -4 degrees C MAT) and elevated paleoprecipitation (-120 cm/yr MAP) estimates as compared to modem conditions; results that are parallel with previously published estimates from the partly coeval Chickaloon Formation deposited in more distal depositional environments in the same basin. The low abundance of leaf herbivory in the Box Canyon dicot assemblage (-9% of leaves damaged) is also similar to the results from assemblages in the meander-plain depositional systems of the Chickaloon. This new suite of data informs models of the tectonostratigraphic evolution of southern Alaska and the developing understanding of terrestrial paleoecology and paleoclimate at high latitudes during the Late Paleocene-Early Eocene greenhouse climate phase. (c) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Salt Chuck, Rush and Brown, and adjacent mines and claims form an area of approximately 15 square miles near the head of Kasaan Bay about 10 miles northwest of the village of Kasaan on Prince of Wales Island in southeastern Alaska. It is an area of moderate relief in which the hills rise from the water’s edge to heights of some 500 feet. Most of the area is covered with dense vegetation and muskeg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent observations and model simulations have highlighted the sensitivity of the forest - tundra ecotone to climatic forcing. In contrast, paleoecological studies have not provided evidence of tree-line fluctuations in response to Holocene climatic changes in Alaska, suggesting that the forest - tundra boundary in certain areas may be relatively stable at multicentennial to millennial time scales. We conducted a multiproxy study of sediment cores from an Alaskan lake near the altitudinal limits of key boreal-forest species. Paleoecological data were compared with independent climatic reconstructions to assess ecosystem responses of the forest - tundra boundary to Little Ice Age (LIA) climatic. uctuations. Pollen, diatom, charcoal, macrofossil, and magnetic analyses provide the first continuous record of vegetation -. re - climate interactions at decadal to centennial time scales during the past 700 years from southern Alaska. Boreal-forest diebacks characterized by declines of Picea mariana, P. glauca, and tree Betula occurred during the LIA ( AD 1500 - 1800), whereas shrubs ( Alnus viridis, Betula glandulosa/nana) and herbaceous taxa (Epilobium, Aconitum) expanded. Marked increases in charcoal abundance and changes in magnetic properties suggest increases in. re importance and soil erosion during the same period. In addition, the conspicuous reduction or disappearance of certain aquatic ( e. g., Isoetes, Nuphar, Pediastrum) and wetland ( Sphagnum) plants and major shifts in diatom assemblages suggest pronounced lake-level. uctuations and rapid ecosystem reorganization in response to LIA climatic deterioration. Our results imply that temperature shifts of 1 - 2 degrees C, when accompanied by major changes in moisture balance, can greatly alter high-altitudinal terrestrial, wetland, and aquatic ecosystems, including conversion between boreal-forest tree line and tundra. The climatic and ecosystem variations in our study area appear to be coherent with changes in solar irradiance, suggesting that changes in solar activity contributed to the environmental instability of the past 700 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Samples were collected from a snow pit and shallow urn core near Kahiltna Pass (2970 m a.s.l.), Denali National Park, Alaska, USA, in May 2008. The record spans autumn 2003 to spring 2008 and reveals clusters of ice layers interpreted as summertime intervals of above-freezing temperatures. High correlation coefficients (0.75-1.00) between annual ice-layer thickness and regional summertime station temperatures for 4 years (n=4) indicate ice-layer thickness is a good proxy for mean and extreme summertime temperatures across Alaska, at least over the short period of record. A Rex-block (aka high-over-low) pattern, a downstream trough over Hudson Bay, Canada, and an upstream trough over eastern Siberia occurred during the three melting events that lasted at least 2 weeks. About half of all shorter melting events were associated with a cut-off low traversing the Gulf of Alaska. We hypothesize that a surface-to-bedrock core extracted from this location would provide a high-quality record of summer temperature and atmospheric blocking variability for the last several hundred years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new species of Cladorhizidac, front the Aleutian Islands is described and compared with all known species of Cladorhizza worldwide. Cladorhiza corona sp. now has a unique growth form with two planes of differently shaped appendages. Appendages are Inserted directly at the stalk; a spherical or conical body at the stalk is lacking. It is the only species reported where different spicule types occur in three morphologically different areas of the sponge. The spiculation of the basal plate is characterized by the occurrence of short, thick anisoxcas and the lack of anisochelae. Anisochelac arc found in the stalk and the basal appendages only. Flattened sigmancistras and (sub-)tylostyles are restricted to the crown. The arrangement of spicules is different in the basal plate, the stalk with the basal appendages, and in the distal append ages. The dimensions and combination of spicule types separate C. corona sp. nov. from all known members of the genus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The late-Holocene shift from Picea glauca (white spruce) to Picea mariana (black spruce) forests marked the establishment of modern boreal forests in Alaska. To understand the patterns and drivers of this vegetational change and the associated late-Holocene environmental dynamics, we analyzed radiocarbon-dated sediments from Grizzly Lake for chironomids, diatoms, pollen, macrofossils, charcoal, element composition, particle size, and magnetic properties for the period 4100–1800 cal BP. Chironomid assemblages reveal two episodes of decreased July temperature, at ca. 3300–3150 (ca −1 °C) and 2900–2550 cal BP (ca −2 °C). These episodes coincided with climate change elsewhere in the Northern Hemisphere, atmospheric reorganization, and low solar activity. Diatom-inferred lake levels dropped by ca. 5 m at 3200 cal BP, suggesting dry conditions during the period 3200–1800 cal BP. P. glauca declined and P. mariana expanded at ca. 3200 cal BP; this vegetational change was linked to diatom-inferred low lake levels and thus decreased moisture availability. Forest cover declined at 3300–3100, 2800–2500 and 2300–2100 cal BP and soil erosion as inferred from increased values of Al, K, Si, Ti, and Ca intensified, when solar irradiance was low. Plant taxa adapted to disturbance and cold climate (e.g. Alnus viridis, shrub Betula, Epilobium) expanded during these periods of reduced forest cover. This open vegetation type was associated with high fire activity that peaked at 2800 cal BP, when climatic conditions were particularly cold and dry. Forest recovery lagged behind subsequent climate warming (≤+3 °C) by ca. 75–225 years. Our multiproxy data set suggests that P. glauca was dominant under warm-moist climatic conditions, whereas P. mariana prevailed under cold-dry and warm-dry conditions. This pattern implies that climatic warming, as anticipated for this century, may promote P. glauca expansions, if moisture availability will be sufficiently high, while P. mariana may expand under dry conditions, possibly exacerbating climate impacts on the fire regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxygen isotopic composition and Mg/Ca ratios in the skeletons of long-lived coralline algae record ambient seawater temperature over time. Similarly, the carbon isotopic composition in the skeletons record delta(13)C values of ambient seawater dissolved inorganic carbon. Here, we measured delta(13)C in the coralline alga Clathromorphum nereostratum to test the feasibility of reconstructing the intrusion of anthropogenic CO(2) into the northern North Pacific Ocean and Bering Sea. The delta(13)C was measured in the high Mgcalcite skeleton of three C. nereostratum specimens from two islands 500 km apart in the Aleutian archipelago. In the records spanning 1887 to 2003, the average decadal rate of decline in delta(13)C values increased from 0.03% yr(-1) in the 1960s to 0.095% yr(-1) in the 1990s, which was higher than expected due to solely the delta(13)C-Suess effect. Deeper water in this region exhibits higher concentrations of CO(2) and low delta(13)C values. Transport of deeper water into surface water (i.e., upwelling) increases when the Aleutian Low is intensified. We hypothesized that the acceleration of the delta(13)C decline may result from increased upwelling from the 1960s to 1990s, which in turn was driven by increased intensity of the Aleutian Low. Detrended delta(13)C records also varied on 4-7 year and bidecadal timescales supporting an atmospheric teleconnection of tropical climate patterns to the northern North Pacific Ocean and Bering Sea manifested as changes in upwelling.