925 resultados para Alaska native
Resumo:
This study investigates the temporal stability of length- and age-at-maturity estimates for female Pacific cod (Gadus macrocephalus) in the Gulf of Alaska and eastern Bering Sea. Females reached 50% maturity (A50) at 4.4 years in the Gulf of Alaska and at 4.9 years in the eastern Bering Sea. Total body length at 50% maturity (LT50) was significantly smaller (503 mm) in the Gulf of Alaska than in the eastern Bering Sea (580 mm). The estimated length- and age-at-maturity did not differ significantly between winter and spring in either the Gulf of Alaska (1999) or Bering Sea (2003) areas. The results of this study raised the spawning biomass estimate of female Alaskan Pacific cod from 298×103 t for 2005 to 499×103 t for 2006. The increased spawning biomass estimate resulted in an increased over-fishing limit for Pacific cod.
Resumo:
The diet of Steller sea lions (Eumetopias jubatus) was determined from 1494 scats (feces) collected at breeding (rookeries) and nonbreeding (haulout) sites in Southeast Alaska from 1993 to 1999. The most common prey of 61 species identified were walleye pollock (Theragra chalcogramma), Pacific herring (Clupea pallasii), Pacific sand lance (Ammodytes hexapterus), Pacific salmon (Salmonidae), arrowtooth flounder (Atheresthes stomias), rockfish (Sebastes spp.), skates (Rajidae), and cephalopods (squid and octopus). Steller sea lion diets at the three Southeast Alaska rookeries differed significantly from one another. The sea lions consumed the most diverse range of prey categories during summer, and the least diverse during fall. Diet was more diverse in Southeast Alaska during the 1990s than in any other region of Alaska (Gulf of Alaska and Aleutian Islands). Dietary differences between increasing and declining populations of Steller sea lions in Alaska correlate with rates of population change, and add credence to the view that diet may have played a role in the decline of sea lions in the Gulf of Alaska and Aleutian Islands.
Resumo:
From 2001 to 2004 in the eastern Aleutian Islands, Alaska, killer whales (Orcinus orca) were encountered 250 times during 421 days of surveys that covered a total of 22,491 miles. Three killer whale groups (resident, transient, and offshore) were identified acoustically and genetically. Resident killer whales were found 12 times more frequently than transient killer whales, and offshore killer whales were encountered only once. A minimum of 901 photographically identified resident whales used the region during our study. A total of 165 mammal-eating transient killer whales were identified, and the majority (70%) were encountered during spring (May and June). The diet of transient killer whales in spring was primarily gray whales (Eschrichtius robustus), and in summer primarily northern fur seals (Callorhinus ursinus). Steller sea lions (Eumetopias jubatus) did not appear to be a preferred prey or major prey item during spring and summer. The majority of killer whales in the eastern Aleutian Islands are the resident ecotype, which does not consume marine mammals.
Resumo:
We tested the hypothesis that larger juvenile sockeye salmon (Oncorhynchus nerka) in Bristol Bay, Alaska, have higher marine-stage survival rates than smaller juvenile salmon. We used scales from returning adults (33 years of data) and trawl samples of juveniles (n= 3572) collected along the eastern Bering Sea shelf during August through September 2000−02. The size of juvenile sockeye salmon mirrored indices of their marine-stage survival rate (e.g., smaller fish had lower indices of marine-stage survival rate). However, there was no relationship between the size of sockeye salmon after their first year at sea, as estimated from archived scales, and brood-year survival size was relatively uniform over the time series, possibly indicating size-selective mortality on smaller individuals during their marine residence. Variation in size, relative abundance, and marine-stage survival rate of juvenile sockeye salmon is likely related to ocean conditions affecting their early marine migratory pathways along the eastern Bering Sea shelf.
Resumo:
Rex sole (Glyptocephalus zachirus) have a wide distribution throughout the North Pacific, ranging from central Baja California to the western Bering Sea. Although rex sole are an important species in the commercial trawl fisheries off the U.S. West Coast, knowledge of their reproductive biology is limited to one study off the Oregon coast where ovaries were analyzed with gross anatomical methods. This study was initiated to determine reproductive and growth parameters specific to rex sole in the Gulf of Alaska (GOA) stock. Female rex sole (n=594) ranging in total length from 166 to 552 mm were collected opportunistically around Kodiak Island, Alaska, from February 2000 to October 2001. All ovaries were analyzed by using standard histological criteria to determine the maturity stage. Year-round sampling of rex sole ovaries confirmed that rex sole are batch spawners and have a protracted spawning season in the GOA that lasts at least eight months, from October to May; the duration of the spawning season and the months of spawning activity are different from those previously estimated. Female rex sole in the GOA had an estimated length at 50% maturity (ML50) of 352 mm, which is greater than the previously estimated ML50 at southern latitudes. The maximum age of collected female rex sole was 29 years, and the estimated age at 50% maturity (MA50) in the GOA was 5.1 years. The von Bertalanffy growth model for rex sole in the GOA was significantly different from the previously estimated model for rex sole off the Oregon coast. This study indicated that there are higher growth rates for rex sole in the GOA than off the Oregon coast and that there are differences in length at maturity and similarity in age at maturity between the two regions.
Resumo:
Humpback whales (Megaptera novaeangliae) are significant marine consumers. To examine the potential effect of predation by humpback whales, consumption (kg of prey daily) and prey removal (kg of prey annually) were modeled for a current and historic feeding aggregation of humpback whales off northeastern Kodiak Island, Alaska. A current prey biomass removal rate was modeled by using an estimate of the 2002 humpback whale abundance. A historic rate of removal was modeled from a prewhaling abundance estimate (population size prior to 1926). Two provisional humpback whale diets were simulated in order to model consumption rate. One diet was based on the stomach contents of whales that were commercially harvested from Port Hobron whaling station in Kodiak, Alaska, between 1926 and 1937, and the second diet, based on local prey availability as determined by fish surveys conducted within the study area, was used to model consumption rate by the historic population. The latter diet was also used to model consumption by the current population and to project a consumption rate if the current population were to grow to reach the historic population size. Models of these simulated diets showed that the current population likely removes nearly 8.83
Resumo:
Data from ichthyoplankton surveys conducted in 1972 and from 1977 to 1999 (no data were collected in 1980) by the Alaska Fisheries Science Center (NOAA, NMFS) in the western Gulf of Alaska were used to examine the timing of spawning, geographic distribution and abundance, and the vertical distribution of eggs and larvae of flathead sole (Hippoglossoides elassodon). In the western Gulf of Alaska, flathead sole spawning began in early April and peaked from early to mid-May on the continental shelf. It progressed in a southwesterly direction along the Alaska Peninsula where three main areas of flathead sole spawning were indentified: near the Kenai Peninsula, in Shelikof Strait, and between the Shumagin Islands and Unimak Island. Flathead sole eggs are pelagic, and their depth distribution may be a function of their developmental stage. Data from MOCNESS tows indicated that eggs sink near time of hatching and the larvae rise to the surface to feed. The geographic distribution of larvae followed a pattern similar to the distribution of eggs, only it shifted about one month later. Larval abundance peaked from early to mid-June in the southern portion of Shelikof Strait. Biological and environmental factors may help to retain flathead sole larvae on the continental shelf near their juvenile nursery areas.
Resumo:
Small native species (SNS) of fish are important source of protein and income for rural people in Bangladesh. A rapid rural appraisal study was carried out to explore the recent changes in the availability of SNS in relation to agroecology and related issues. Village residents noted that the availability of SNS had declined drastically due to habitat loss related to agricultural intensification and due to the restriction of access to the remaining habitats in the course of aquaculture development. Their perception was that poor people had gained from the intensification of agriculture in terms of rice consumption but had lost in terms of reduced access to fish and other animal products.
Resumo:
Lake Victoria, in East Africa, has suffered from introductions and invasions of non-native species such as Lates niloticus, various tilapiine species, and Eichornia crassipes since the 1950s. These have had a devastating effect on the natural biological communities. This paper reviews the effects of the introductions on ecology, environment, fisheries and the local human population.
Resumo:
The growth rate of Steller sea lion (Eumetopias jubatus) pups was studied in southeast Alaska, the Gulf of Alaska, and the Aleutian Islands during the first six weeks after birth. The Steller sea lion population is currently stable in southeast Alaska but is declining in the Aleutian Islands and parts of the Gulf of Alaska. Male pups (22.6 kg [±2.21 SD]) were significantly heavier than female pups (19.6 kg [±1.80 SD]) at 1−5 days of age, but there were no significant differences among rookeries. Male and female pups grew (in mass, standard length, and axillary girth) at the same rate. Body mass and standard length increased at a faster rate for pups in the Aleutian Islands and the western Gulf of Alaska (0.45−0.48 kg/day and 0.47−0.53 cm/day, respectively) than in southeast Alaska (0.23 kg/day and 0.20 cm/day). Additionally, axillary girth increased at a faster rate for pups in the Aleutian Islands (0.59 cm/ day) than for pups in southeast Alaska v(0.25 cm/day). Our results indicate a greater maternal investment in male pups during gestation, but not during early lactation. Although differences in pup growth rate occurred among rookeries, there was no evidence that female sea lions and their pups were nutritionally stressed in the area of population decline
Resumo:
During the 1990s, sea otter (Enhydra lutris) counts in the Aleutian archipelago decreased by 70% throughout the archipelago between 1992 and 2000. Recent aerial surveys in the Aleutians did not identify the eastward extent of the decline; therefore we conducted an aerial survey along the Alaska Peninsula for comparison with baseline information. Since 1986, abundance estimates in offshore habitat have declined by 27– 49% and 93 –94% in northern and southern Alaska Peninsula study areas, respectively. During this same time period, sea otter density has declined by 63% along the island coastlines within the south Alaska Peninsula study area. Between 1989 and 2001, sea otter density along the southern coastline of the Alaska Peninsula declined by 35% to the west of Castle Cape but density increased by 4% to the east, which may indicate an eastward extent of the decline. In all study areas, sea otters were primarily concentrated in bays and lagoon, whereas historically, large rafts of otters had been distributed offshore. The population declines observed along the Alaska Peninsula occurred at roughly the same time as declines in the Aleutian islands to the east and the Kodiak archipelago to the west. Since the mid-1980s, the sea otter population throughout southwest Alaska has declined overall by an estimated 56–68%, and the decline may be one of the most significant sea otter conservation issues in our time.
Resumo:
The condition of soft-textured flesh in commercially harvested sablefish, Anoplopoma fimbria, from southeastern Alaska was investigated by National Marine Fisheries Service (NMFS) scientists from the Alaska Fisheries Science Center’s Auke Bay Laboratories (ABL) in Alaska and the Northwest Fisheries Science Center in Seattle, Wash. Sablefish were sampled by longline, pot, and trawl at five sites around Chichagof Island at depths of 259–988 m in the summer of 1985 and at depths of 259–913 m in the winter of 1986. At the time of capture and data collection, sablefish were categorized as being “firm” or “soft” by visual and tactile examination, individually weighed, measured for length, and sexed. Subsamples of the fish were analyzed and linear regressions and analyses of variance were performed on both the summer (n = 242) and winter (n = 439) data for combinations of chemical and physical analyses, depth of capture, weight vs. length, flesh condition, gonad condition, and sex. We successfully identified and selected sablefish with firm- and soft-textured flesh by tactile and visual methods. Abundance of firm fish in catches varied by season: 67% in winter and 40% in summer. Winter catches may give a higher yield than summer catches. Abundance of firm fish catches also varied with depth. Firm fish were routinely found shallower than soft fish. The highest percentage of firm fish were found at depths less than 365 m in summer and at 365–730 m in winter, whereas soft fish were usually more abundant at depths greater than 731 m. Catches of firm fish declined with increasing depth. More than 80% of the fish caught during winter at depths between 365 and 730 m had firm flesh, but this declined to 48% at these depths in summer. Longlines and pots caught similar proportions of firm and soft fish with both gears catching more firm than soft fish. Trawls caught a higher proportion of soft fish compared to longlines and pots in winter. Chemical composition of “firm” and “soft” fish differed. On average “soft” fish had 14% less protein, 12% more lipid, and 3% less ash than firm fish. Cooked yields from sablefish with soft-textured flesh were 31% less than cooked yields from firm fish. Sablefish flesh quality (firmness) related significantly to the biochemistry of white muscle with respect to 11 variables. Summer fish of all flesh conditions averaged 6% heavier than winter fish. Regulating depth of fishing could increase the yield from catches, but the feasibility and benefits from this action will require further evaluation and study. Results of this study provide a basis for reducing the harvest of sablefish with soft flesh and may stimulate further research into the cause and effect relationship of the sablefish soft-flesh phenomenon.
Resumo:
Thirteen bottom trawl surveys conducted in Alaska waters for red king crab, Paralithodes camtschaticus, during 1940–61 are largely forgotten today even though they helped define our current knowledge of this resource. Government publications on six exploratory surveys (1940–49, 1957) included sample locations and some catch composition data, but these documents are rarely referenced. Only brief summaries of the other seven annual (1955–61) grid-patterned trawl surveys from the eastern Bering Sea were published. Although there have been interruptions in sampling and some changes in the trawl survey methods, a version of this grid-patterned survey continues through the present day, making it one of the oldest bottom-trawl surveys in U.S. waters. Unfortunately, many of the specific findings made during these early efforts have been lost to the research community. Here, we report on the methods, results, and significance of these early surveys, which were collated from published reports and the unpublished original data sheets so that researchers might begin incorporating this information into stock assessments, ecosystem trend analyses, and perhaps even revise the baseline population distribution and abundance estimates.
Resumo:
Fisheries managers have established many marine protected areas (MPA’s) in the Federal and state waters off Alaska to protect ecological structure and function, establish control sites for scientific research studies, conserve benthic habitat, protect vulnerable stocks, and protect cultural resources. Many MPA’s achieve multiple objectives. Over 40 named MPA’s, many of which include several sites, encompass virtually all Federal waters off Alaska and most of the state waters where commercial fisheries occur. All of the MPA’s include measures to prohibit a particular fishery or gear type (particularly bottom trawls) on a seasonal or year-round basis, and several MPA’s prohibit virtually all commercial fishing. Although the effectiveness of MPA’s is difficult to evaluate on an individual basis, as a group they are an important component of the management program for sustainable fisheries and conserving marine biodiversity off Alaska.