936 resultados para Airway Relaxation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of flight is the most important feature of birds, and this ability has helped them become one of the most successful groups of vertebrates. However, some species have independently lost their ability to fly. The degeneration of flight abilit

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-step viscoelastic spherical indentation method is proposed to compensate for 1) material relaxation and 2) sample thickness. In the first step, the indenter is moved at a constant speed and the reaction force is measured. In the second step, the indenter is held at a constant position and the relaxation response of the material is measured. Then the relaxation response is fit with a multi-exponential function which corresponds to a three-branch general Maxwell model. The relaxation modulus is derived by correcting the finite ramp time introduced in the first step. The proposed model takes into account the sample thickness, which is important for applications in which the sample thickness is less than ten times the indenter radius. The model is validated numerically by finite element simulations. Experiments are carried out on a 10% gelatin phantom and a chicken breast sample with the proposed method. The results for both the gelatin phantom and the chicken breast sample agree with the results obtained from a surface wave method. Both the finite element simulations and experimental results show improved elasticity estimations by incorporating the sample thickness into the model. The measured shear elasticities of the 10% gelatin sample are 6.79 and 6.93 kPa by the proposed finite indentation method at sample thickness of 40 and 20 mm, respectively. The elasticity of the same sample is estimated to be 6.53 kPa by the surface wave method. For the chicken breast sample, the shear elasticity is measured to be 4.51 and 5.17 kPa by the proposed indentation method at sample thickness of 40 and 20 mm, respectively. Its elasticity is measured by the surface wave method to be 4.14 kPa. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondria are essential for cellular energy production in most eukaryotic organisms. However, when glucose is abundant, yeast species that underwent whole-genome duplication (WGD) mostly conduct fermentation even under aerobic conditions, and most can

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breather stability and longevity in thermally relaxing nonlinear arrays is investigated under the scrutiny of the analysis and tools employed for time series and state reconstruction of a dynamical system. We briefly review the methods used in the analysis and characterize a breather in terms of the results obtained with such methods. Our present work focuses on spontaneously appearing breathers in thermal Fermi-Pasta-Ulam arrays but we believe that the conclusions are general enough to describe many other related situations; the particular case described in detail is presented as another example of systems where three incommensurable frequencies dominate their chaotic dynamics (reminiscent of the Ruelle-Takens scenario for the appearance of chaotic behavior in nonlinear systems). This characterization may also be of great help for the discovery of breathers in experimental situations where the temporal evolution of a local variable (like the site energy) is the only available/measured data. © 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article a study of the fracture characteristics of Co66Fe4Mo2Si16B12 amorphous ribbon in the as-quenched state and after relaxation is presented. In the as-quenched state, the morphology of the crack surface shows a 'vein pattern' structure that corresponds to a large amount of plastic flow. After relaxation the surface morphology of the crack shows that when the temperature of the thermal annealing increases the plastic flow involved in the crack decreases. In the as-quenched state dynamic fracture characteristics (crack branching and stress wave induced crack) have been observed. These dynamic characteristics have not been observed in the relaxed samples but in the samples annealed at 250 °C for 20 min apart from the main crack, a crack along the width of the ribbon has been observed. © 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach is presented to resolve bias-induced metastability mechanisms in hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFTs). The post stress relaxation of threshold voltage (V(T)) was employed to quantitatively distinguish between the charge trapping process in gate dielectric and defect state creation in active layer of transistor. The kinetics of the charge de-trapping from the SiN traps is analytically modeled and a Gaussian distribution of gap states is extracted for the SiN. Indeed, the relaxation in V(T) is in good agreement with the theory underlying the kinetics of charge de-trapping from gate dielectric. For the TFTs used in this work, the charge trapping in the SiN gate dielectric is shown to be the dominant metastability mechanism even at bias stress levels as low as 10 V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a realistic simulation of 2D dry foams under quasistatic shear. After a short transient, a shear-banding instability is observed. These results are compared with measurements obtained on real 2D (confined) foams. The numerical model allows us to exhibit the mechanical response of the material to a single plastication event. From the analysis of this elastic propagator, we propose a scenario for the onset and stability of the flow localization process in foams, which should remain valid for most athermal amorphous systems under creep flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a convex relaxation of maximum a posteriori estimation of a mixture of regression models. Although our relaxation involves a semidefinite matrix variable, we reformulate the problem to eliminate the need for general semidefinite programming. In particular, we provide two reformulations that admit fast algorithms. The first is a max-min spectral reformulation exploiting quasi-Newton descent. The second is a min-min reformulation consisting of fast alternating steps of closed-form updates. We evaluate the methods against Expectation-Maximization in a real problem of motion segmentation from video data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first part of the paper steady two-phase flow predictions have been performed for the last stage of a model steam turbine to examine the influence of drag between condensed fog droplets and the continuous vapour phase. In general, droplets due to homogeneous condensation are small and thus kinematic relaxation provides only a minor contribution to the wetness losses. Different droplet size distributions have been investigated to estimate at which size inter-phase friction becomes more important. The second part of the paper deals with the deposition of fog droplets on stator blades. Results from several references are repeated to introduce the two main deposition mechanisms which are inertia and turbulent diffusion. Extensive postprocessing routines have been programmed to calculate droplet deposition due to these effects for a last stage stator blade in three-dimensions. In principle the method to determine droplet deposition by turbulent diffusion equates to that of Yau and Young [1] and the advantages and disadvantages of this relatively simple method are discussed. The investigation includes the influence of different droplet sizes on droplet deposition rates and shows that for small fog droplets turbulent diffusion is the main deposition mechanism. If the droplets size is increased inertial effects become more and more important and for droplets around 1 μm inertial deposition dominates. Assuming realistic droplet sizes the overall deposition equates to about 1% to 3% of the incoming wetness for the investigated guide vane at normal operating conditions. Copyright © 2013 by Solar Turbines Incorporated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temperature dependence of hole spin relaxation time in both neutral and n-doped ultrathin InAs monolayers has been investigated. It has been suggested that D'yakonov-Perel (DP) mechanism dominates the spin relaxation process at both low and high temperature regimes. The appearance of a peak in temperature dependent spin relaxation time reveals the important contribution of Coulomb scatterings between carriers to the spin kinetics at low temperature, though electron-phonon scattering becomes dominant at higher temperatures. Increased electron screening effect in the n-doped sample has been suggested to account for the shortened spin relaxation time compared with the undoped one. The results suggest that hole spins are also promising for building solid-state qubits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report that, by linearly polarized pumping of different wavelengths, Kerr transients appear at zero magnetic field only in the case when GaMnAs samples are initialized at 3 K by first applying a 0.8 Tesla field and then returning to zero field. We find that, instead of magnetization precession, the near-band gap excitation induces a coherent out-of-plane turning of magnetization, which shows very long relaxation dynamics with no precession. When photon energy increases, the peak value of the Kerr transient increases, but it decays rapidly to the original slow transient seen under the near-band-gap excitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A flat, fully strain-relaxed Si0.72Ge0.28 thin film was grown on Si (1 0 0) substrate with a combination of thin low-temperature (LT) Ge and LT-Si0.72Ge0.28 buffer layers by ultrahigh vacuum chemical vapor deposition. The strain relaxation ratio in the Si0.72Ge0.28 film was enhanced up to 99% with the assistance of three-dimensional Ge islands and point defects introduced in the layers, which furthermore facilitated an ultra-low threading dislocation density of 5 x 10(4) cm (2) for the top SiGe film. More interestingly, no cross-hatch pattern was observed on the SiGe surface and the surface root-mean-square roughness was less than 2 nm. The temperature for the growth of LT-Ge layer was optimized to be 300 degrees C. (C) 2008 Elsevier B.V. All rights reserved.