942 resultados para Agricultural laboratories
Resumo:
C.R. Bull, R. Zwiggelaar and R.D. Speller, 'Review of inspection techniques based on the elastic and inelastic scattering of X-rays and their potential in the food and agricultural industry', Journal of Food Engineering 33 (1-2), 167-179 (1997)
Resumo:
C.M. Onyango, J.A. Marchant and R. Zwiggelaar, 'Modelling uncertainty in agricultural image analysis', Computers and Electronics in Agriculture 17 (3), 295-305 (1997)
Resumo:
R. Zwiggelaar, C.R. Bull, and M.J. Mooney, 'X-ray simulations for imaging applications in the agricultural and food industry', Journal of Agricultural Engineering Research 63(2), 161-170 (1996)
Resumo:
New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2009 period on a 0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor. For the partitioning we focused on the MODIS era. We used maps of burned area derived from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997-2000) and estimates of plant productivity derived from Advanced Very High Resolution Radiometer (AVHRR) observations during the same period. Average global fire carbon emissions according to this version 3 of the Global Fire Emissions Database (GFED3) were 2.0 PgC year-1 with significant interannual variability during 1997-2001 (2.8 Pg Cyear-1 in 1998 and 1.6 PgC year-1 in 2001). Globally, emissions during 2002-2007 were rela-tively constant (around 2.1 Pg C year-1) before declining in 2008 (1.7 Pg Cyear-1) and 2009 (1.5 PgC year-1) partly due to lower deforestation fire emissions in South America and tropical Asia. On a regional basis, emissions were highly variable during 2002-2007 (e.g., boreal Asia, South America, and Indonesia), but these regional differences canceled out at a global level. During the MODIS era (2001-2009), most carbon emissions were from fires in grasslands and savannas (44%) with smaller contributions from tropical deforestation and degradation fires (20%), woodland fires (mostly confined to the tropics, 16%), forest fires (mostly in the extratropics, 15%), agricultural waste burning (3%), and tropical peat fires (3%). The contribution from agricultural waste fires was likely a lower bound because our approach for measuring burned area could not detect all of these relatively small fires. Total carbon emissions were on average 13% lower than in our previous (GFED2) work. For reduced trace gases such as CO and CH4, deforestation, degradation, and peat fires were more important contributors because of higher emissions of reduced trace gases per unit carbon combusted compared to savanna fires. Carbon emissions from tropical deforestation, degradation, and peatland fires were on average 0.5 PgC year-1. The carbon emissions from these fires may not be balanced by regrowth following fire. Our results provide the first global assessment of the contribution of different sources to total global fire emissions for the past decade, and supply the community with an improved 13-year fire emissions time series. © 2010 Author(s).
Resumo:
BACKGROUND: Automated reporting of estimated glomerular filtration rate (eGFR) is a recent advance in laboratory information technology (IT) that generates a measure of kidney function with chemistry laboratory results to aid early detection of chronic kidney disease (CKD). Because accurate diagnosis of CKD is critical to optimal medical decision-making, several clinical practice guidelines have recommended the use of automated eGFR reporting. Since its introduction, automated eGFR reporting has not been uniformly implemented by U. S. laboratories despite the growing prevalence of CKD. CKD is highly prevalent within the Veterans Health Administration (VHA), and implementation of automated eGFR reporting within this integrated healthcare system has the potential to improve care. In July 2004, the VHA adopted automated eGFR reporting through a system-wide mandate for software implementation by individual VHA laboratories. This study examines the timing of software implementation by individual VHA laboratories and factors associated with implementation. METHODS: We performed a retrospective observational study of laboratories in VHA facilities from July 2004 to September 2009. Using laboratory data, we identified the status of implementation of automated eGFR reporting for each facility and the time to actual implementation from the date the VHA adopted its policy for automated eGFR reporting. Using survey and administrative data, we assessed facility organizational characteristics associated with implementation of automated eGFR reporting via bivariate analyses. RESULTS: Of 104 VHA laboratories, 88% implemented automated eGFR reporting in existing laboratory IT systems by the end of the study period. Time to initial implementation ranged from 0.2 to 4.0 years with a median of 1.8 years. All VHA facilities with on-site dialysis units implemented the eGFR software (52%, p<0.001). Other organizational characteristics were not statistically significant. CONCLUSIONS: The VHA did not have uniform implementation of automated eGFR reporting across its facilities. Facility-level organizational characteristics were not associated with implementation, and this suggests that decisions for implementation of this software are not related to facility-level quality improvement measures. Additional studies on implementation of laboratory IT, such as automated eGFR reporting, could identify factors that are related to more timely implementation and lead to better healthcare delivery.
Resumo:
p.153-169
Resumo:
p.141-151
Resumo:
p.71-81
Resumo:
An explosion occurred in a busy university laboratory during a few minutes when it happened to be unoccupied. The explosion was puzzling since the laboratory was dedicated to geochemical work, such as digesting rock samples with stable, inorganic reagents. The only unstable substance knowingly stored or handled for this purpose, perchloric acid, was not in use on the day of the incident. The investigation was unable to reach an exact conclusion but did prove that a substantial organic contaminant, not on the laboratory inventory, must have been present