984 resultados para Aggregates, mean volume


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Although diuretics are mainly used for the treatment of acute decompensated heart failure (ADHF), inadequate responses and complications have led to the use of extracorporeal ultrafiltration (UF) as an alternative strategy for reducing volume overloads in patients with ADHF. Objective: The aim of our study is to perform meta-analysis of the results obtained from studies on extracorporeal venous ultrafiltration and compare them with those of standard diuretic treatment for overload volume reduction in acute decompensated heart failure. Methods: MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials databases were systematically searched using a pre‑specified criterion. Pooled estimates of outcomes after 48 h (weight change, serum creatinine level, and all-cause mortality) were computed using random effect models. Pooled weighted mean differences were calculated for weight loss and change in creatinine level, whereas a pooled risk ratio was used for the analysis of binary all-cause mortality outcome. Results: A total of nine studies, involving 613 patients, met the eligibility criteria. The mean weight loss in patients who underwent UF therapy was 1.78 kg [95% Confidence Interval (CI): −2.65 to −0.91 kg; p < 0.001) more than those who received standard diuretic therapy. The post-intervention creatinine level, however, was not significantly different (mean change = −0.25 mg/dL; 95% CI: −0.56 to 0.06 mg/dL; p = 0.112). The risk of all-cause mortality persisted in patients treated with UF compared with patients treated with standard diuretics (Pooled RR = 1.00; 95% CI: 0.64–1.56; p = 0.993). Conclusion: Compared with standard diuretic therapy, UF treatment for overload volume reduction in individuals suffering from ADHF, resulted in significant reduction of body weight within 48 h. However, no significant decrease of serum creatinine level or reduction of all-cause mortality was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background:Left atrial volume (LAV) is a predictor of prognosis in patients with heart failure.Objective:We aimed to evaluate the determinants of LAV in patients with dilated cardiomyopathy (DCM).Methods:Ninety patients with DCM and left ventricular (LV) ejection fraction ≤ 0.50 were included. LAV was measured with real-time three-dimensional echocardiography (eco3D). The variables evaluated were heart rate, systolic blood pressure, LV end-diastolic volume and end-systolic volume and ejection fraction (eco3D), mitral inflow E wave, tissue Doppler e´ wave, E/e´ ratio, intraventricular dyssynchrony, 3D dyssynchrony index and mitral regurgitation vena contracta. Pearson´s coefficient was used to identify the correlation of the LAV with the assessed variables. A multiple linear regression model was developed that included LAV as the dependent variable and the variables correlated with it as the predictive variables.Results:Mean age was 52 ± 11 years-old, LV ejection fraction: 31.5 ± 8.0% (16-50%) and LAV: 39.2±15.7 ml/m2. The variables that correlated with the LAV were LV end-diastolic volume (r = 0.38; p < 0.01), LV end-systolic volume (r = 0.43; p < 0.001), LV ejection fraction (r = -0.36; p < 0.01), E wave (r = 0.50; p < 0.01), E/e´ ratio (r = 0.51; p < 0.01) and mitral regurgitation (r = 0.53; p < 0.01). A multivariate analysis identified the E/e´ ratio (p = 0.02) and mitral regurgitation (p = 0.02) as the only independent variables associated with LAV increase.Conclusion:The LAV is independently determined by LV filling pressures (E/e´ ratio) and mitral regurgitation in DCM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mitochondrial (M) and lipid droplet (L) volume density (vd) are often used in exercise research. Vd is the volume of muscle occupied by M and L. The means of calculating these percents are accomplished by applying a grid to a 2D image taken with transmission electron microscopy; however, it is not known which grid best predicts these values. PURPOSE: To determine the grid with the least variability of Mvd and Lvd in human skeletal muscle. METHODS: Muscle biopsies were taken from vastus lateralis of 10 healthy adults, trained (N=6) and untrained (N=4). Samples of 5-10mg were fixed in 2.5% glutaraldehyde and embedded in EPON. Longitudinal sections of 60 nm were cut and 20 images were taken at random at 33,000x magnification. Vd was calculated as the number of times M or L touched two intersecting grid lines (called a point) divided by the total number of points using 3 different sizes of grids with squares of 1000x1000nm sides (corresponding to 1µm2), 500x500nm (0.25µm2) and 250x250nm (0.0625µm2). Statistics included coefficient of variation (CV), 1 way-BS ANOVA and spearman correlations. RESULTS: Mean age was 67 ± 4 yo, mean VO2peak 2.29 ± 0.70 L/min and mean BMI 25.1 ± 3.7 kg/m2. Mean Mvd was 6.39% ± 0.71 for the 1000nm squares, 6.01% ± 0.70 for the 500nm and 6.37% ± 0.80 for the 250nm. Lvd was 1.28% ± 0.03 for the 1000nm, 1.41% ± 0.02 for the 500nm and 1.38% ± 0.02 for the 250nm. The mean CV of the three grids was 6.65% ±1.15 for Mvd with no significant differences between grids (P>0.05). Mean CV for Lvd was 13.83% ± 3.51, with a significant difference between the 1000nm squares and the two other grids (P<0.05). The 500nm squares grid showed the least variability between subjects. Mvd showed a positive correlation with VO2peak (r = 0.89, p < 0.05) but not with weight, height, or age. No correlations were found with Lvd. CONCLUSION: Different size grids have different variability in assessing skeletal muscle Mvd and Lvd. The grid size of 500x500nm (240 points) was more reliable than 1000x1000nm (56 points). 250x250nm (1023 points) did not show better reliability compared with the 500x500nm, but was more time consuming. Thus, choosing a grid with square size of 500x500nm seems the best option. This is particularly relevant as most grids used in the literature are either 100 points or 400 points without clear information on their square size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Red blood cell (RBC) parameters such as morphology, volume, refractive index, and hemoglobin content are of great importance for diagnostic purposes. Existing approaches require complicated calibration procedures and robust cell perturbation. As a result, reference values for normal RBC differ depending on the method used. We present a way for measuring parameters of intact individual RBCs by using digital holographic microscopy (DHM), a new interferometric and label-free technique with nanometric axial sensitivity. The results are compared with values achieved by conventional techniques for RBC of the same donor and previously published figures. A DHM equipped with a laser diode (lambda = 663 nm) was used to record holograms in an off-axis geometry. Measurements of both RBC refractive indices and volumes were achieved via monitoring the quantitative phase map of RBC by means of a sequential perfusion of two isotonic solutions with different refractive indices obtained by the use of Nycodenz (decoupling procedure). Volume of RBCs labeled by membrane dye Dil was analyzed by confocal microscopy. The mean cell volume (MCV), red blood cell distribution width (RDW), and mean cell hemoglobin concentration (MCHC) were also measured with an impedance volume analyzer. DHM yielded RBC refractive index n = 1.418 +/- 0.012, volume 83 +/- 14 fl, MCH = 29.9 pg, and MCHC 362 +/- 40 g/l. Erythrocyte MCV, MCH, and MCHC achieved by an impedance volume analyzer were 82 fl, 28.6 pg, and 349 g/l, respectively. Confocal microscopy yielded 91 +/- 17 fl for RBC volume. In conclusion, DHM in combination with a decoupling procedure allows measuring noninvasively volume, refractive index, and hemoglobin content of single-living RBCs with a high accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To compare pressure–volume (P–V) curves obtained with the Galileo ventilator with those obtained with the CPAP method in patients with ALI or ARDS receiving mechanical ventilation. P–V curves were fitted to a sigmoidal equation with a mean R2 of 0.994 ± 0.003. Lower (LIP) and upper inflection (UIP), and deflation maximum curvature (PMC) points calculated from the fitted variables showed a good correlation between methods with high intraclass correlation coefficients. Bias and limits of agreement for LIP, UIP and PMC obtained with the two methods in the same patient were clinically acceptable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our objective was to establish the age-related 3D size of maxillary, sphenoid, and frontal sinuses. A total of 179 magnetic resonance imaging (MRI) of children under 17 years (76 females, 103 males) were included and sinuses were measured in the three axes. Maxillary sinuses measured at birth (mean+/-standard deviation) 7.3+/-2.7 mm length (or antero-posterior)/4.0+/-0.9 mm height (or cranio-caudal)/2.7+/-0.8 mm width (or transverse). At 16 years old, maxillary sinus measured 38.8+/-3.5 mm/36.3+/-6.2 mm/27.5+/-4.2 mm. Sphenoid sinus pneumatization starts in the third year of life after conversion from red to fatty marrow with mean values of 5.8+/-1.4 mm/8.0+/-2.3 mm/5.8+/-1.0 mm. Pneumatization progresses gradually to reach at 16 years 23.0+/-4.5 mm/22.6+/-5.8 mm/12.8+/-3.1 mm. Frontal sinuses present a wide variation in size and most of the time are not valuable with routine head MRI techniques. They are not aerated before the age of 6 years. Frontal sinuses dimensions at 16 years were 12.8+/-5.0 mm/21.9+/-8.4 mm/24.5+/-13.3 mm. A sinus volume index (SVI) of maxillary and sphenoid sinus was computed using a simplified ellipsoid volume formula, and a table with SVI according to age with percentile variations is proposed for easy clinical application. Percentile curves of maxillary and sphenoid sinuses are presented to provide a basis for objective determination of sinus size and volume during development. These data are applicable to other techniques such as conventional X-ray and CT scan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION Hemodynamic resuscitation should be aimed at achieving not only adequate cardiac output but also sufficient mean arterial pressure (MAP) to guarantee adequate tissue perfusion pressure. Since the arterial pressure response to volume expansion (VE) depends on arterial tone, knowing whether a patient is preload-dependent provides only a partial solution to the problem. The objective of this study was to assess the ability of a functional evaluation of arterial tone by dynamic arterial elastance (Ea(dyn)), defined as the pulse pressure variation (PPV) to stroke volume variation (SVV) ratio, to predict the hemodynamic response in MAP to fluid administration in hypotensive, preload-dependent patients with acute circulatory failure. METHODS We performed a prospective clinical study in an adult medical/surgical intensive care unit in a tertiary care teaching hospital, including 25 patients with controlled mechanical ventilation who were monitored with the Vigileo(®) monitor, for whom the decision to give fluids was made because of the presence of acute circulatory failure, including arterial hypotension (MAP ≤65 mmHg or systolic arterial pressure <90 mmHg) and preserved preload responsiveness condition, defined as a SVV value ≥10%. RESULTS Before fluid infusion, Ea(dyn) was significantly different between MAP responders (MAP increase ≥15% after VE) and MAP nonresponders. VE-induced increases in MAP were strongly correlated with baseline Ea(dyn) (r(2) = 0.83; P < 0.0001). The only predictor of MAP increase was Ea(dyn) (area under the curve, 0.986 ± 0.02; 95% confidence interval (CI), 0.84-1). A baseline Ea(dyn) value >0.89 predicted a MAP increase after fluid administration with a sensitivity of 93.75% (95% CI, 69.8%-99.8%) and a specificity of 100% (95% CI, 66.4%-100%). CONCLUSIONS Functional assessment of arterial tone by Ea(dyn), measured as the PVV to SVV ratio, predicted arterial pressure response after volume loading in hypotensive, preload-dependent patients under controlled mechanical ventilation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: In numerous high-risk medical and surgical conditions, a greater volume of patients undergoing treatment in a given setting or facility is associated with better survival. For patients with pulmonary embolism, the relation between the number of patients treated in a hospital (volume) and patient outcome is unknown. METHODS: We studied discharge records from 186 acute care hospitals in Pennsylvania for a total of 15 531 patients for whom the primary diagnosis was pulmonary embolism. The study outcomes were all-cause mortality in hospital and within 30 days after presentation for pulmonary embolism and the length of hospital stay. We used logistic models to study the association between hospital volume and 30-day mortality and discrete survival models to study the association between in-hospital mortality and time to hospital discharge. RESULTS: The median annual hospital volume for pulmonary embolism was 20 patients (interquartile range 10-42). Overall in-hospital mortality was 6.0%, whereas 30-day mortality was 9.3%. In multivariable analysis, very-high-volume hospitals (> or = 42 cases per year) had a significantly lower odds of in-hospital death (odds ratio [OR] 0.71, 95% confidence interval [CI] 0.51-0.99) and of 30-day death (OR 0.71, 95% CI 0.54-0.92) than very-low-volume hospitals (< 10 cases per year). Although patients in the very-high-volume hospitals had a slightly longer length of stay than those in the very-low-volume hospitals (mean difference 0.7 days), there was no association between volume and length of stay. INTERPRETATION: In hospitals with a high volume of cases, pulmonary embolism was associated with lower short-term mortality. Further research is required to determine the causes of the relation between volume and outcome for patients with pulmonary embolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To evaluate accuracy and reproducibility of flow velocity and volume measurements in a phantom and in human coronary arteries using breathhold velocity-encoded (VE) MRI with spiral k-space sampling at 3 Tesla. MATERIALS AND METHODS: Flow velocity assessment was performed using VE MRI with spiral k-space sampling. Accuracy of VE MRI was tested in vitro at five constant flow rates. Reproducibility was investigated in 19 healthy subjects (mean age 25.4 +/- 1.2 years, 11 men) by repeated acquisition in the right coronary artery (RCA). RESULTS: MRI-measured flow rates correlated strongly with volumetric collection (Pearson correlation r = 0.99; P < 0.01). Due to limited sample resolution, VE MRI overestimated the flow rate by 47% on average when nonconstricted region-of-interest segmentation was used. Using constricted region-of-interest segmentation with lumen size equal to ground-truth luminal size, less than 13% error in flow rate was found. In vivo RCA flow velocity assessment was successful in 82% of the applied studies. High interscan, intra- and inter-observer agreement was found for almost all indices describing coronary flow velocity. Reproducibility for repeated acquisitions varied by less than 16% for peak velocity values and by less than 24% for flow volumes. CONCLUSION: 3T breathhold VE MRI with spiral k-space sampling enables accurate and reproducible assessment of RCA flow velocity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We hypothesized that acute volume expansion by saline infusion triggers the release of endothelin-1. Bolus intravenous saline infusion (8 mL/min) in six groups of conscious Wistar rats and spontaneously hypertensive rats did not change mean arterial pressure or heart rate (n = 8 to 12). At 1 min after infusion, the plasma endothelin-1 level was significantly increased in Wistar rats and in spontaneously hypertensive rats by 42% and 61%, respectively (unpaired data). In 12 Wistar rats, the endothelin-1 level increased from 0.68 +/- 0.13 to 1.19 +/- 0.17 fmol/mL (mean +/- SEM, P <.0001, paired data). Thus, acute volume load by rapid saline infusion increases plasma endothelin-1 levels. Vasoconstriction induced by endothelin-1 may counteract enhanced circumferential stretch created by volume expansion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Researchers have used stylized facts on asset prices and trading volumein stock markets (in particular, the mean reversion of asset returnsand the correlations between trading volume, price changes and pricelevels) to support theories where agents are not rational expected utilitymaximizers. This paper shows that this empirical evidence is in factconsistent with a standard infite horizon perfect information expectedutility economy where some agents face leverage constraints similar tothose found in todays financial markets. In addition, and in sharpcontrast to the theories above, we explain some qualitative differencesthat are observed in the price-volume relation on stock and on futuresmarkets. We consider a continuous-time economy where agents maximize theintegral of their discounted utility from consumption under both budgetand leverage con-straints. Building on the work by Vila and Zariphopoulou(1997), we find a closed form solution, up to a negative constant, for theequilibrium prices and demands in the region of the state space where theconstraint is non-binding. We show that, at the equilibrium, stock holdingsvolatility as well as its ratio to stock price volatility are increasingfunctions of the stock price and interpret this finding in terms of theprice-volume relation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: To compare the delineations and interpretations of target volumes by physicians in different radio-oncology centers. MATERIALS AND METHODS: Eleven Swiss radio-oncology centers delineated volumes according to ICRU 50 recommendations for one prostate and one head and neck case. In order to evaluate the consistency of the volume delineations, the following parameters were determined: 1) the target volumes (GTV, CTV and manually expanded PTV) and their extensions in the three main axes and 2) the correlation of the volume delineated by each pair of centers using the ratio of the intersection to the union (called proximity index). RESULTS: The delineated prostate volume was 105+/-55cm(3) for the CTV and 218+/-44cm(3) for the PTV. The delineated head and neck volume was 46+/-15cm(3) for the GTV, 327+/-154cm(3) for the CTV and 528+/-106cm(3) for the PTV. The mean proximity index for the prostate case was 0.50+/-0.13 for the CTV and 0.57+/-0.11 for the PTV. The proximity index for the head and neck case was 0.45+/-0.09 for the GTV, 0.42+/-0.13 for the CTV and 0.59+/-0.06 for the PTV. CONCLUSIONS: Large discrepancies between all the delineated target volumes were observed. There was an inverse relationship between the CTV volume and the margin between CTV and PTV, leading to less discrepancies in the PTV than is the CTV delineations. There was more spread in the sagittal and frontal planes due to CT pixel anisotropy, which suggests that radiation oncologists should delineate the target volumes not only in the transverse plane, but also in the sagittal and frontal planes to improve the delineation by allowing a consistency check.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To assess the suitability of a hot-wire anemometer infant monitoring system (Florian, Acutronic Medical Systems AG, Hirzel, Switzerland) for measuring flow and tidal volume (Vt) proximal to the endotracheal tube during high-frequency oscillatory ventilation. DESIGN: In vitro model study. SETTING: Respiratory research laboratory. SUBJECT: In vitro lung model simulating moderate to severe respiratory distress. INTERVENTION: The lung model was ventilated with a SensorMedics 3100A ventilator. Vt was recorded from the monitor display (Vt-disp) and compared with the gold standard (Vt-adiab), which was calculated using the adiabatic gas equation from pressure changes inside the model. MEASUREMENTS AND MAIN RESULTS: A range of Vt (1-10 mL), frequencies (5-15 Hz), pressure amplitudes (10-90 cm H2O), inspiratory times (30% to 50%), and Fio2 (0.21-1.0) was used. Accuracy was determined by using modified Bland-Altman plots (95% limits of agreement). An exponential decrease in Vt was observed with increasing oscillatory frequency. Mean DeltaVt-disp was 0.6 mL (limits of agreement, -1.0 to 2.1) with a linear frequency dependence. Mean DeltaVt-disp was -0.2 mL (limits of agreement, -0.5 to 0.1) with increasing pressure amplitude and -0.2 mL (limits of agreement, -0.3 to -0.1) with increasing inspiratory time. Humidity and heating did not affect error, whereas increasing Fio2 from 0.21 to 1.0 increased mean error by 6.3% (+/-2.5%). CONCLUSIONS: The Florian infant hot-wire flowmeter and monitoring system provides reliable measurements of Vt at the airway opening during high-frequency oscillatory ventilation when employed at frequencies of 8-13 Hz. The bedside application could improve monitoring of patients receiving high-frequency oscillatory ventilation, favor a better understanding of the physiologic consequences of different high-frequency oscillatory ventilation strategies, and therefore optimize treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The system of no-till sowing stands out as being a technology that suits the objectives of more rational use of the soil and greater protection against the erosion. However, through till, any of it, occurs modifications of the soil's structure. This current work aims to study the influence of the energy state of the water and of the organic matter on the mechanism of compaction of Red Oxisol under no-till management system. Humid and non-deformed sample were collected in horizon AP of two agricultural areas under no-till, with and without rotation of cultures. In the laboratory, these samples were broken into fragments and sifted to obtain aggregates of 4 to 5 mm sized, which were placed in equilibrium under four matrix potentials. Thereafter, they were exposed to uni-dimensional compression with pressures varying from 32 to 1,000 kPa. The results in such a way show that the highest compressibility of aggregates both for the tilling with rotation of cultures as for the tilling without rotation of cultures, occurred for matrix potential -32 kPa (humidity of 0.29-0.32 kg kg-1, respectively), while the minor occurred for the potentials of -1 and -1,000 kPa (humidity of 0.35 and 0.27 kg kg-1, respectively), indicating that this soil should not be worked with humidity ranging around 0.29 to 0.32 kg kg-1 and the highest reduction of volume of aggregates was obtained for the mechanical pressures lower than 600 inferior kPa, indicating that these soils showed to be very influenced by compression, when exposed to mechanical work. Also, the aggregates of soil under no-till and rotation of crops presented higher sensitivity to the compression than the aggregates of soil under no-till and without rotation of crops, possibly for having better structural conditions given to a higher content of organic matter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Obtaining information about soil properties under different agricultural uses to plan soil management is very important with a view to sustainability in the different agricultural systems. The aim of this study was to evaluate changes in certain indicators of the physical quality of a dystrophic Red Latosol (Oxisol) under different agricultural uses. The study was conducted in an agricultural area located in northern Paraná State. Dystrophic Red Latosol samples were taken from four sites featuring different types of land use typical of the region: pasture of Brachiaria decumbens (P); sugarcane (CN); annual crops under no-tillage (CAPD); and native forest (permanent conservation area) (control (C)). For each land use, 20 completely randomized, disturbed and undisturbed soil samples were collected from the 0-20 cm soil layer, to determine soil texture, volume of water-dispersible clay, soil flocculation (FD), particle density, quantity of organic matter (OM), soil bulk density (Ds), soil macroporosity (Ma) and microporosity (Mi), total soil porosity (TSP), mean geometric diameter of soil aggregates (MGD), and penetration resistance (PR). The results showed differences in OM, FD, MGD, Ds, PR, and Ma between the control (soil under forest) and the areas used for agriculture (P, CN and CAPD). The soils of the lowest physical quality were those used for CN and CAPD, although only the former presented a Ma level very close to that representing unfavorable conditions for plant growth. For the purposes of this study, the physical properties studied were found to perform well as indicators of soil quality.