389 resultados para Aerodynamics.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The great importance in selecting the profile of an aircraft wing concerns the fact that its relevance in the performance thereof; influencing this displacement costs (fuel consumption, flight level, for example), the conditions of flight safety (response in critical condition) of the plane. The aim of this study was to examine the aerodynamic parameters that affect some types of wing profile, based on wind tunnel testing, to determine the aerodynamic efficiency of each one of them. We compared three types of planforms, chosen from considerations about the characteristics of the aircraft model. One of them has a common setup, and very common in laboratory classes to be a sort of standard aerodynamic, it is a symmetrical profile. The second profile shows a conFiguration of the concave-convex type, the third is also a concave-convex profile, but with different implementation of the second, and finally, the fourth airfoil profile has a plano-convex. Thus, three different categories are covered in profile, showing the main points of relevance to their employment. To perform the experiment used a wind tunnel-type open circuit, where we analyzed the pressure distribution across the surface of each profile. Possession of the drag polar of each wing profile can be, from the theoretical basis of this work, the aerodynamic characteristics relate to the expected performance of the experimental aircraft, thus creating a selection model with guaranteed performance aerodynamics. It is believed that the philosophy used in this dissertation research validates the results, resulting in an experimental alternative for reliable implementation of aerodynamic testing in models of planforms

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well known that fatigue behaviour is an important parameter to be considered in mechanical components subjected to constant and variable amplitude loadings. In combination with corrosion phenomenon, fatigue effects were responsible for proximally 64% of fails that occur in metallic parts of aeronautical accidents in the last 30 years. Recovered substrates have been extensively used in the aerospace field. Cadmium electroplating has been widely applied to promote protective coatings in aeronautical components, resulting in excellent corrosion protection combined with a good performance in cyclic loading. Ecological considerations allied to the increasing demands for corrosion resistance, resulted in the search for possible alternatives. Zinc-nickel alloys received considerable interest recently, since these coatings showed some advantages such as a good resistance to white and red rust, high plating rates and acceptation in the market. In this study the effects of zinc-nickel coatings electroplated on AISI 4340 high strength steel were analysed on rotating bending and axial fatigue strength, corrosion and adhesion resistance. Compressive residual stress field was measured by a X-ray tensometry prior to fatigue tests. Optical microscopy images showed coating thicknesses, adhesion and the existence of an uniform coverage of nearly all substrates. The fractured fatigue specimens were investigated using a scanning electron microscope. Three different zinc-nickel coating thicknesses were tested and comparison with rotating bending fatigue data from specimens cadmium electroplated and heat treated at 190°C for 3, 8 and 24 hours to avoid the diffusion of hydrogen in the substrate, was performed. Experimental results showed effect of coatings on the AISI 4340 steel behaviour when submitted to fatigue testing and the existence of coating thickness influence on the fatigue strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HIBISCUS is a project for studying the dynamics, microphysics and chemistry of the Tropical Tropopause Layer based on balloon measurements. Thirteen heavy sondes and 18 short duration balloons of different types have been used for local process studies. Eight superpressure (BP) and 3 Infra Red Montgolfier (MIR) long duration balloons have been flown for extending the investigations at global scale around the world. Overall the campaign has been very successful operationally as well as scientifically. The paper provides a description of the balloons, the instruments and the strategy used for meeting at best the goals of the project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flutter is an in-flight vibration of flexible structures caused by energy in the airstream absorbed by the lifting surface. This aeroelastic phenomenon is a problem of considerable interest in the aeronautic industry, because flutter is a potentially destructive instability resulting from an interaction between aerodynamic, inertial, and elastic forces. To overcome this effect, it is possible to use passive or active methodologies, but passive control adds mass to the structure and it is, therefore, undesirable. Thus, in this paper, the goal is to use linear matrix inequalities (LMIs) techniques to design an active state-feedback control to suppress flutter. Due to unmeasurable aerodynamic-lag states, one needs to use a dynamic observer. So, LMIs also were applied to design a state-estimator. The simulated model, consists of a classical flat plate in a two-dimensional flow. Two regulators were designed, the first one is a non-robust design for parametric variation and the second one is a robust control design, both designed by using LMIs. The parametric uncertainties are modeled through polytopic uncertainties. The paper concludes with numerical simulations for each controller. The open-loop and closed-loop responses are also compared and the results show the flutter suppression. The perfomance for both controllers are compared and discussed. Copyright © 2006 by ABCM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The necessity of adapting the standardized fan models to conditions of higher temperature has emerged due to the growth of concerning referring to the consequences of the gas expelling after the Mont Blanc tunnel accident in Italy and France, where even though, with 100 fans in operation, 41 people died. However, since then, the defied solutions have pointed to aerodynamic disadvantages or have seemed nonappropriate in these conditions. The objective of this work is to present an alternative to the market standard fans considering a new technology in constructing blades. This new technology introduces the use of the stainless steel AISI 409 due to its good adaptation to temperatures higher than 400°C, particularly exposed to temperatures of gas exhaust from tunnels in fire situation. Furthermore, it presents a very good resistance to corrosion and posterior welding and pressing, due to its alloyed elements. The innovation is centered in the process of a deep drawing of metallic shells and posterior welding, in order to keep the ideal aerodynamic superficies for the fan ideal performance. On the other hand, the finite element method, through the elasto-plastic software COSMOS permitted the verification of the thickness and structural stability of the blade in relation to the aerodynamic efforts established in the project. In addition, it is not advisable the fabrication of blades with variable localized thickness not even, non-uniform ones, due to the verified concentration of tensions and the difficulties observed in the forming. In this way, this study recommends the construction of blades with uniform variations of thickness. © 2007 Springer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aerodynamic balances are employed in wind tunnels to estimate the forces and moments acting on the model under test. This paper proposes a methodology for the assessment of uncertainty in the calibration of an internal multi-component aerodynamic balance. In order to obtain a suitable model to provide aerodynamic loads from the balance sensor responses, a calibration is performed prior to the tests by applying known weights to the balance. A multivariate polynomial fitting by the least squares method is used to interpolate the calibration data points. The uncertainties of both the applied loads and the readings of the sensors are considered in the regression. The data reduction includes the estimation of the calibration coefficients, the predicted values of the load components and their corresponding uncertainties, as well as the goodness of fit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an approach for structural health monitoring (SHM) by using adaptive filters. The experimental signals from different structural conditions provided by piezoelectric actuators/sensors bonded in the test structure are modeled by a discrete-time recursive least square (RLS) filter. The biggest advantage to use a RLS filter is the clear possibility to perform an online SHM procedure since that the identification is also valid for non-stationary linear systems. An online damage-sensitive index feature is computed based on autoregressive (AR) portion of coefficients normalized by the square root of the sum of the square of them. The proposed method is then utilized in a laboratory test involving an aeronautical panel coupled with piezoelectric sensors/actuators (PZTs) in different positions. A hypothesis test employing the t-test is used to obtain the damage decision. The proposed algorithm was able to identify and localize the damages simulated in the structure. The results have shown the applicability and drawbacks the method and the paper concludes with suggestions to improve it. ©2010 Society for Experimental Mechanics Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most of the established procedures for analysis of aeroelastic flutter in the development of aircraft are based on frequency domain methods. Proposing new methodologies in this field is always a challenge, because the new methods need to be validated by many experimental procedures. With the interest for new flight control systems and nonlinear behavior of aeroelastic structures, other strategies may be necessary to complete the analysis of such systems. If the aeroelastic model can be written in time domain, using state-space formulation, for instance, then many of the tools used in stability analysis of dynamic systems may be used to help providing an insight into the aeroelastic phenomenon. In this respect, this paper presents a discussion on the use of Gramian matrices to determine conditions of aeroelastic flutter. The main goal of this work is to introduce how observability gramian matrix can be used to identify the system instability. To explain the approach, the theory is outlined and simulations are carried out on two benchmark problems. Results are compared with classical methods to validate the approach and a reduction of computational time is obtained for the second example. © 2013 Douglas Domingues Bueno et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Física - FEG

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper shows the application of a hysteretic model for the Magnetorheological Damper (MRD) placed in the plunge degree-of-freedom of aeroelastic model of a wing. This hysteretic MRD model was developed by the researchers of the French Aerospace Lab. (ONERA) and describe, with a very good precision, the hysteretic behavior of the MRD. The aeroelastic model used in this paper do not have structural nonlinearities, the only nonlinearities showed in the model, are in the unsteady flow equations and are the same proposed by Theodorsen and Wagner in their unsteady aerodynamics theory; and the nonlinearity introduced by the hysteretic model used. The main objective of this paper is show the mathematical modeling of the problem and the equations that describes the aeroelastic response of our problem; and the gain obtained with the introduction of this hysteretic model in the equations with respect to other models that do not show the this behavior, through of pictures that represents the time response and Phase diagrams. These pictures are obtained using flow velocities before and after the flutter velocity. Finally, an open-loop control was made to show the effect of the MRD in the aeroelastic behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the project of a new experimental facility to be installed at the Aerodynamics Division of the Institute of Aeronautics and Space is presented. This new facility will provide means to perform experimental campaigns to analyze the flow behavior at different rocket nozzle concepts using cold gas that will be obtained from a modification of the Pilot Transonic Wind Tunnel air system. The new installation will enable less expensive experiments in a more secure environment, since the cold gas experimental procedures do not demand fuel storage and burn and security procedures are much less severe. Furthermore, experiments can be carried with different types of sensors, commonly used in wind tunnel tests. Also, the optical access is facilitated enabling the use of optical techniques for the characterization of flow properties inside the nozzles, such as pressure and temperature sensitive painting. The full project design and the operation conditions will be showed, as also some technical considerations about the flor behavior in the facility

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the project of a new experimental facility to be installed at the Aerodynamics Division of the Institute of Aeronautics and Space is presented. This new facility will provide means to perform experimental campaigns to analyze the flow behavior at different rocket nozzle concepts using cold gas that will be obtained from a modification of the Pilot Transonic Wind Tunnel air system. The new installation will enable less expensive experiments in a more secure environment, since the cold gas experimental procedures do not demand fuel storage and burn and security procedures are much less severe. Furthermore, experiments can be carried with different types of sensors, commonly used in wind tunnel tests. Also, the optical access is facilitated enabling the use of optical techniques for the characterization of flow properties inside the nozzles, such as pressure and temperature sensitive painting. The full project design and the operation conditions will be showed, as also some technical considerations about the flor behavior in the facility