896 resultados para Aedes Aegypti
Resumo:
This study aimed to describe the behavior of oviposition traps for Aedes aegypti over time, to compare it with the larval survey and to investigate the association with climatic variables. It was conducted in São José do Rio Preto city, São Paulo. Daily climatic data and fortnightly measurements for oviposition traps and larval infestation were collected from October 2003 to September 2004. Three different periods were identified in the behavior of oviposition traps' positivity and mean number of eggs: increase, plateau and decrease in values. These measurements followed the variation of climatic data from the first and third periods. High correlation was obtained between the positivity and the mean number of eggs. The oviposition traps showed higher capacity to detect the vector than did larval survey. It was observed that the first (October to December) and third (May to September) periods were considered to be the most suitable to use oviposition traps than larval surveys.
Resumo:
In short space of time increase in temperature and rainfall can affect vector populations and, consequently, the diseases for them transmitted. The present study analyzed the effect of small temperature and humidity variations on the fecundity, fertility and survival of Aedes aegypti. These parameters were analyzed using individual females at temperatures ranging from 23 to 27 °C (mean 25 °C); 28 to 32 °C (mean 30 °C) and 33 to 37 °C (mean 35 ºC) associated to 60±8% and 80±6% relative humidity. Females responded to an increase in temperature by reducing egg production, oviposition time and changing oviposition patterns. At 25 ºC and 80% relative humidity, females survived two-fold more and produced 40% more eggs when compared to those kept at 35 ºC and 80% relative humidity. However, in 45% of females kept at 35 ºC and 60% relative humidity oviposition was inhibited and only 15% females laid more than 100 eggs, suggesting that the intensity of the temperature effect was influenced by humidity. Gradual reductions in egg fertility at 60% relative humidity were observed with the increase in temperature, although such effect was not found in the 80% relative humidity at 25 º C and 30 º C. These results suggest that the reduction in population densities recorded in tropical areas during seasons when temperatures reach over 35 ºC is likely to be strongly influenced by temperature and humidity, with a negative effect on several aspects of mosquito biology.
Resumo:
This study aimed at registering and monitoring the presence of Aedes aegypti in the University Hospital Júlio Muller, Cuiabá-MT, as well as investigating the influence of temperature and rainfall on its temporal distribution and egg densities in ovitraps. The study was performed from April/2007 to March/2008, utilizing ovitraps with 10% of hay infusion and a wood paddle as an oviposition substrate. For surveillance, one ovitrap was placed in each of the 12 points distributed throughout the hospital. Ovitraps were collected monthly at the end of a 5-day installation period. After egg counting, wood paddles were immersed in water to allow larval eclosion for species identification through optical microscopy. Egg Density Index (EDI), Positive Ovitraps Index (POI), and Mean Number of Eggs (MNE) were used for data analysis. The presence of A. aegypti in the hospital was registered throughout the study period, except in July. The MNE was proportionally higher in the internal area (n= 8.47 eggs/paddle) when compared to the external area (n= 5.46 eggs/paddle), and was higher in September/October 2007 and January/February 2008. A significant increase in EDI, POI and MNE was registered in periods where the average temperature was higher, and the increase in POI was also concomitant with an increase in rainfall. The continuous presence of A. aegypti in the hospital throughout the study period, points out the need of including this mosquito in the arthropod control list in this environment. This is particularly important, considering that A. aegypti is an important vector of several arboviroses.
Resumo:
Genetic variability of a population of Aedes aegypti from Paraná, Brazil, using the mitochondrial ND4 gene. To analyze the genetic variability of populations of Aedes aegypti, 156 samples were collected from 10 municipalities in the state of Paraná, Brazil. A 311 base pairs (bp) region of the NADH dehydrogenase subunit 4 (ND4) mitochondrial gene was examined. An analysis of this fragment identified eight distinct haplotypes. The mean genetic diversity was high (h = 0.702; p = 0.01556). AMOVA analysis indicated that most of the variation (67%) occurred within populations and the F ST value (0.32996) was highly significant. F ST values were significant in most comparisons among cities. The isolation by distance was not significant (r = -0.1216 and p = 0, 7550), indicating that genetic distance is not related to geographic distance. Neighbor-joining analysis showed two genetically distinct groups within Paraná. The DNA polymorphism and AMOVA data indicate a decreased gene flow in populations from Paraná, which can result in increased vectorial competence.
Resumo:
We investigated the use of Bacillus thuringiensis isolated in the state of Amazonas, in Brazil, for the biological control of the dengue vector Aedes aegypti. From 25 soil samples collected in nine municipalities, 484 bacterial colonies were obtained, 57 (11.78%) of which were identified as B. thuringiensis. Six isolates, IBt-03, IBt-06, IBt-07, IBt-28, IBt-30, and BtAM-27 showed insecticidal activity, and only BtAM-27 presents the five genes investigated cry4Aa, cry4Ba, cry10Aa, cry11Aa, and cry11Ba. The IBt-07 and IBt- 28, with lower LC50 values, showed equal toxicity compared to the standards. The isolates of B. thuringiensisfrom Amazonas constitute potential new means of biological control for A. aegypti, because of their larvicidal activity and the possibility that they may also contain new combinations of toxins.
Resumo:
ABSTRACT After a dengue outbreak, the knowledge on the extent, distribution and mechanisms of insecticide resistance is essential for successful insecticide-based dengue control interventions. Therefore, we evaluated the potential changes to insecticide resistance in natural Aedes aegypti populations to Organophosphates (OP) and Pyrethroids (PY) after chemical vector control interventions. After a Dengue outbreak in 2010, A. aegypti mosquitoes from the urban area of Jacarezinho (Paraná, Brazil) were collected in 2011 and 2012. Insecticide resistance to OP Temephos was assessed in 2011 and 2012 by dose–response bioassays adopting WHO-based protocols. Additionally, in both sampling, PY resistance was also investigated by the Val1016Ile mutation genotyping. In 2011, a random collection of mosquitoes was carried out; while in 2012, the urban area was divided into four regions where mosquitoes were sampled randomly. Bioassays conducted with larvae in 2011 (82 ± 10%; RR95 = 3.6) and 2012 (95 ± 3%; RR95 = 2.5) indicated an incipient altered susceptibility to Temephos. On the other hand, the Val1016IIe mutation analysis in 2011, presented frequencies of the 1016Ilekdr allele equal to 80%. Nevertheless, in 2012, when the urban area of Jacarezinho was analyzed as a single unit, the frequency of the mutant allele was 70%. Additionally, the distribution analysis of the Val1016Ile mutation in 2012 showed the mutant allele frequencies ≥60% in all regions. These outcomes indicated the necessity of developing alternative strategies such as insecticide rotations for delaying the evolution of resistance.
Resumo:
Phytochemical investigation from the stems of Spathelia excelsa (Rutaceae) collected in Amazonas yielded deacetylspathelin (1), 7,8-dimethoxyflindersine (2), new glabretal-type triterpenoid 3β-angeloyl-21,24-epoxy-7α, 21α, 23α, 25-tetrahydroxy-4α, 4β, 8β, 10β-tetramethyl-25-dimethyl-14, 18-cyclo-5α, 13α, 14α, 17α-cholestane (3), in addition to the known steroids β-sitosterol and stigmasterol. Their structures were established on the basis of spectral data. The compounds 1 and 3 were assayed on Aedes aegypti (larvicidal and adulticidal activities and compound 3 exhibited larvicidal properties with LC50 of 4,8 µg/mL.
Resumo:
In the search for new larvicides from plants, we have investigated the potential activity of the rotenoids deguelin (1), 12a-hydroxy-α-toxicarol (2) and tephrosin (3), isolated from the bioactive ethanol extract of roots of Tephrosia toxicaria Pers., against Aedes aegypti, the main vector of dengue. The absolute configuration of these compounds was determined by circular dichroism (CD) spectra. The LC50 values of the compounds evaluated justify the potential of T. toxicaria as a new natural larvicide.
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Entomología Médica) UANL
Resumo:
Tesis (Maestría en Ciencias en Entomología Médica) UANL
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Entomología Médica) UANL
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Entomología Médica) UANL
Resumo:
Tesis (Maestria en Ciencias con Especialidad en Entomología Médica) UANL
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Entomología Médica) UANL.
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Entomología Médica) UANL