984 resultados para Additional control
Resumo:
Mammography equipment must be evaluated to ensure that images will be of acceptable diagnostic quality with lowest radiation dose. Quality Assurance (QA) aims to provide systematic and constant improvement through a feedback mechanism to address the technical, clinical and training aspects. Quality Control (QC), in relation to mammography equipment, comprises a series of tests to determine equipment performance characteristics. The introduction of digital technologies promoted changes in QC tests and protocols and there are some tests that are specific for each manufacturer. Within each country specifi c QC tests should be compliant with regulatory requirements and guidance. Ideally, one mammography practitioner should take overarching responsibility for QC within a service, with all practitioners having responsibility for actual QC testing. All QC results must be documented to facilitate troubleshooting, internal audit and external assessment. Generally speaking, the practitioner’s role includes performing, interpreting and recording the QC tests as well as reporting any out of action limits to their service lead. They must undertake additional continuous professional development to maintain their QC competencies. They are usually supported by technicians and medical physicists; in some countries the latter are mandatory. Technicians and/or medical physicists often perform many of the tests indicated within this chapter. It is important to recognise that this chapter is an attempt to encompass the main tests performed within European countries. Specific tests related to the service that you work within must be familiarised with and adhered too.
Resumo:
The performance of supersonic engine inlets and external aerodynamic surfaces can be critically affected by shock wave / boundary layer interactions (SBLIs), whose severe adverse pressure gradients can cause boundary layer separation. Currently such problems are avoided primarily through the use of boundary layer bleed/suction which can be a source of significant performance degradation. This study investigates a novel type of flow control device called micro-vortex generators (µVGs) which may offer similar control benefits without the bleed penalties. µVGs have the ability to alter the near-wall structure of compressible turbulent boundary layers to provide increased mixing of high speed fluid which improves the boundary layer health when subjected to flow disturbance. Due to their small size,µVGs are embedded in the boundary layer which provide reduced drag compared to the traditional vortex generators while they are cost-effective, physically robust and do not require a power source. To examine the potential of µVGs, a detailed experimental and computational study of micro-ramps in a supersonic boundary layer at Mach 3 subjected to an oblique shock was undertaken. The experiments employed a flat plate boundary layer with an impinging oblique shock with downstream total pressure measurements. The moderate Reynolds number of 3,800 based on displacement thickness allowed the computations to use Large Eddy Simulations without the subgrid stress model (LES-nSGS). The LES predictions indicated that the shock changes the structure of the turbulent eddies and the primary vortices generated from the micro-ramp. Furthermore, they generally reproduced the experimentally obtained mean velocity profiles, unlike similarly-resolved RANS computations. The experiments and the LES results indicate that the micro-ramps, whose height is h≈0.5δ, can significantly reduce boundary layer thickness and improve downstream boundary layer health as measured by the incompressible shape factor, H. Regions directly behind the ramp centerline tended to have increased boundary layer thickness indicating the significant three-dimensionality of the flow field. Compared to baseline sizes, smaller micro-ramps yielded improved total pressure recovery. Moving the smaller ramps closer to the shock interaction also reduced the displacement thickness and the separated area. This effect is attributed to decreased wave drag and the closer proximity of the vortex pairs to the wall. In the second part of the study, various types of µVGs are investigated including micro-ramps and micro-vanes. The results showed that vortices generated from µVGs can partially eliminate shock induced flow separation and can continue to entrain high momentum flux for boundary layer recovery downstream. The micro-ramps resulted in thinner downstream displacement thickness in comparison to the micro-vanes. However, the strength of the streamwise vorticity for the micro-ramps decayed faster due to dissipation especially after the shock interaction. In addition, the close spanwise distance between each vortex for the ramp geometry causes the vortex cores to move upwards from the wall due to induced upwash effects. Micro-vanes, on the other hand, yielded an increased spanwise spacing of the streamwise vortices at the point of formation. This resulted in streamwise vortices staying closer to the wall with less circulation decay, and the reduction in overall flow separation is attributed to these effects. Two hybrid concepts, named “thick-vane” and “split-ramp”, were also studied where the former is a vane with side supports and the latter has a uniform spacing along the centerline of the baseline ramp. These geometries behaved similar to the micro-vanes in terms of the streamwise vorticity and the ability to reduce flow separation, but are more physically robust than the thin vanes. Next, Mach number effect on flow past the micro-ramps (h~0.5δ) are examined in a supersonic boundary layer at M=1.4, 2.2 and 3.0, but with no shock waves present. The LES results indicate that micro-ramps have a greater impact at lower Mach number near the device but its influence decays faster than that for the higher Mach number cases. This may be due to the additional dissipation caused by the primary vortices with smaller effective diameter at the lower Mach number such that their coherency is easily lost causing the streamwise vorticity and the turbulent kinetic energy to decay quickly. The normal distance between the vortex core and the wall had similar growth indicating weak correlation with the Mach number; however, the spanwise distance between the two counter-rotating cores further increases with lower Mach number. Finally, various µVGs which include micro-ramp, split-ramp and a new hybrid concept “ramped-vane” are investigated under normal shock conditions at Mach number of 1.3. In particular, the ramped-vane was studied extensively by varying its size, interior spacing of the device and streamwise position respect to the shock. The ramped-vane provided increased vorticity compared to the micro-ramp and the split-ramp. This significantly reduced the separation length downstream of the device centerline where a larger ramped-vane with increased trailing edge gap yielded a fully attached flow at the centerline of separation region. The results from coarse-resolution LES studies show that the larger ramped-vane provided the most reductions in the turbulent kinetic energy and pressure fluctuation compared to other devices downstream of the shock. Additional benefits include negligible drag while the reductions in displacement thickness and shape factor were seen compared to other devices. Increased wall shear stress and pressure recovery were found with the larger ramped-vane in the baseline resolution LES studies which also gave decreased amplitudes of the pressure fluctuations downstream of the shock.
Resumo:
Biological control of introduced weeds in the 22 Pacific island countries and territories (PICTs) began in 1911, with the lantana seed-feeding fly introduced into Fiji and New Caledonia from Hawaii. To date, a total of 62 agents have been deliberately introduced into the PICTs to control 21 weed species in 17 countries. A further two agents have spread naturally into the region. The general impact of the 36 biocontrol agents now established in the PICTs ranges from none to complete control of their target weed(s). Fiji has been most active in weed biocontrol, releasing 30 agents against 11 weed species. Papua New Guinea, Guam, and the Federated States of Micronesia have also been very active in weed biocontrol. For some weeds such as Lantana camara, agents have been released widely, and can now be found in 15 of the 21 PICTs in which the weed occurs. However, agents for other commonly found weeds, such as Sida acuta, have been released in only a few countries in which the weed is present. There are many safe and effective biocontrol agents already in the Pacific that could be utilised more widely, and highly effective agents that have been released elsewhere in the world that could be introduced following some additional host specificity testing. This paper discusses the current status of biological control efforts against introduced weeds in the 22 PICTs and reviews options that could be considered by countries wishing to initiate weed biological control programmes.
“Enjoy your baby” Internet-based CBT for mothers with babies: a feasibility randomised control trial
Resumo:
Background: Postnatal depression is a global health problem with lasting effects on the family. Government policy is focussed on early intervention and increasing access to psychological therapies. There is a growing evidence base for the use of computerised CBT packages and this study investigated the feasibility of a CBT-based self-help internet intervention for new mothers. Objective: To assess the ability to recruit mothers, deliver an internet course, obtain follow-up data and evaluate what mothers think of the course. Design: A feasibility randomised control design was used to compare a waiting list control group (delayed access= DA) to the Enjoy Your Baby course (immediate access= IA). Measures were administered at baseline and 8 week follow-up. Methods: Adverts were placed in the Metro freesheet, on charity web pages, on social media, posters were put up in the community, and leaflets were handed out at mother and baby groups. Participants had to be 18 years old or over with a child less than 18 months old. The IA arm was given access to the course straight away. After 8 weeks all participants were asked to recomplete the original measures and those in the IA arm also gave feedback on the course. Participants in the DA arm were given access after recompleting the questionnaires. Due to a lack of follow-up data a small discussion group was conducted. Intervention: The course contains 4 core modules including helping mothers understand why they feel the way they do and helping them build closeness to their babies. Additional modules, worksheets and homework tasks were available. The DA group were given a list of additional support resources and services, and encouraged to seek additional help if required. All participants received weekly automated emails for 12 weeks as they worked through the course. It was not possible to deliver individualised support. 34 Results: Despite using a number of recruitment strategies, recruitment was lower and slower than anticipated, and attrition was high. 41 women, primarily recruited via the internet, were randomised (IA n=21, DA n=20). No significant differences were observed between participants in either arm at baseline and no statistically significant differences were identified when the demographics and baseline measures of participants who logged-on to the course were compared to those who did not, or when participants who completed follow-up measures were compared to those who did not. Pre and post intervention scores on the EPDS approached statistical significance (P=.059, r=.444) favouring the intervention arm. The discussion group suggested strengths of the course and recommended areas for improvement, including making the course more mobile friendly. Conclusion: Internet interventions show promise; however it is difficult to recruit mothers, engagement is low and attrition high. A number of recommendations are made and a further pilot or an internal pilot of a larger substantive study should be conducted to confirm recruitment and retention. Trial ID: ISRCTN90927910.
Resumo:
To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments.
Resumo:
Cancer is a major cause of death in Australia and there is considerable interest in the role health education in hospital settings has in reducing this burden. Based on a survey of medical superintendents and other hospital staff, this article describes the cancer control activities routinely conducted in Australian public hospitals. The survey considered cigarette smoking, alcohol, diet and nutrition, exercise, and the early detection of skin cancer, cervical cancer, and breast cancer. Overall 112 medical superintendents (93%) participated and a further 163 hospital staff members provided additional details. Not unexpectedly, the survey confirmed the very low level of activity and identified a number of specific issues that need to be addressed in order to enhance cancer control activities in public hospitals. Given the relatively higher level of activity, and the prominence of cigarette smoking and alcohol consumption as health issues, one approach might be to initially concentrate on these areas when they are related to the patient's condition. Article in International Quarterly of Community Health Education 15(3):229-40 · January 1994
Resumo:
BACKGROUND Integrons are found in hundreds of environmental bacterial species, but are mainly known as the agents responsible for the capture and spread of antibiotic-resistance determinants between Gram-negative pathogens. The SOS response is a regulatory network under control of the repressor protein LexA targeted at addressing DNA damage, thus promoting genetic variation in times of stress. We recently reported a direct link between the SOS response and the expression of integron integrases in Vibrio cholerae and a plasmid-borne class 1 mobile integron. SOS regulation enhances cassette swapping and capture in stressful conditions, while freezing the integron in steady environments. We conducted a systematic study of available integron integrase promoter sequences to analyze the extent of this relationship across the Bacteria domain. RESULTS Our results showed that LexA controls the expression of a large fraction of integron integrases by binding to Escherichia coli-like LexA binding sites. In addition, the results provide experimental validation of LexA control of the integrase gene for another Vibrio chromosomal integron and for a multiresistance plasmid harboring two integrons. There was a significant correlation between lack of LexA control and predicted inactivation of integrase genes, even though experimental evidence also indicates that LexA regulation may be lost to enhance expression of integron cassettes. CONCLUSIONS Ancestral-state reconstruction on an integron integrase phylogeny led us to conclude that the ancestral integron was already regulated by LexA. The data also indicated that SOS regulation has been actively preserved in mobile integrons and large chromosomal integrons, suggesting that unregulated integrase activity is selected against. Nonetheless, additional adaptations have probably arisen to cope with unregulated integrase activity. Identifying them may be fundamental in deciphering the uneven distribution of integrons in the Bacteria domain.
Resumo:
A novel numerical model of a Bent Backwards Duct Buoy (BBDB) Oscillating Water Column (OWC) Wave Energy Converter was created based on existing isolated numerical models of the different energy conversion systems utilised by an OWC. The novel aspect of this numerical model is that it incorporates the interdependencies of the different power conversion systems rather than modelling each system individually. This was achieved by accounting for the dynamic aerodynamic damping caused by the changing turbine rotational velocity by recalculating the turbine damping for each simulation sample and applying it via a feedback loop. The accuracy of the model was validated using experimental data collected during the Components for Ocean Renewable Energy Systems (CORES) EU FP-7 project that was tested in Galway Bay, Ireland. During the verification process, it was discovered that the model could also be applied as a valuable tool when troubleshooting device performance. A new turbine was developed and added to a full scale model after being investigated using Computational Fluid Dynamics. The energy storage capacity of the impulse turbine was investigated by modelling the turbine with both high and low inertia and applying three turbine control theories to the turbine using the full scale model. A single Maximum Power Point Tracking algorithm was applied to the low-inertia turbine, while both a fixed and dynamic control algorithm was applied to the high-inertia turbine. These results suggest that the highinertia turbine could be used as a flywheel energy storage device that could help minimize output power variation despite the low operating speed of the impulse turbine. This research identified the importance of applying dynamic turbine damping to a BBDB OWC numerical model, revealed additional value of the model as a device troubleshooting tool, and found that an impulse turbine could be applied as an energy storage system.
Resumo:
The idea of spacecraft formations, flying in tight configurations with maximum baselines of a few hundred meters in low-Earth orbits, has generated widespread interest over the last several years. Nevertheless, controlling the movement of spacecraft in formation poses difficulties, such as in-orbit high-computing demand and collision avoidance capabilities, which escalate as the number of units in the formation is increased and complicated nonlinear effects are imposed to the dynamics, together with uncertainty which may arise from the lack of knowledge of system parameters. These requirements have led to the need of reliable linear and nonlinear controllers in terms of relative and absolute dynamics. The objective of this thesis is, therefore, to introduce new control methods to allow spacecraft in formation, with circular/elliptical reference orbits, to efficiently execute safe autonomous manoeuvres. These controllers distinguish from the bulk of literature in that they merge guidance laws never applied before to spacecraft formation flying and collision avoidance capacities into a single control strategy. For this purpose, three control schemes are presented: linear optimal regulation, linear optimal estimation and adaptive nonlinear control. In general terms, the proposed control approaches command the dynamical performance of one or several followers with respect to a leader to asymptotically track a time-varying nominal trajectory (TVNT), while the threat of collision between the followers is reduced by repelling accelerations obtained from the collision avoidance scheme during the periods of closest proximity. Linear optimal regulation is achieved through a Riccati-based tracking controller. Within this control strategy, the controller provides guidance and tracking toward a desired TVNT, optimizing fuel consumption by Riccati procedure using a non-infinite cost function defined in terms of the desired TVNT, while repelling accelerations generated from the CAS will ensure evasive actions between the elements of the formation. The relative dynamics model, suitable for circular and eccentric low-Earth reference orbits, is based on the Tschauner and Hempel equations, and includes a control input and a nonlinear term corresponding to the CAS repelling accelerations. Linear optimal estimation is built on the forward-in-time separation principle. This controller encompasses two stages: regulation and estimation. The first stage requires the design of a full state feedback controller using the state vector reconstructed by means of the estimator. The second stage requires the design of an additional dynamical system, the estimator, to obtain the states which cannot be measured in order to approximately reconstruct the full state vector. Then, the separation principle states that an observer built for a known input can also be used to estimate the state of the system and to generate the control input. This allows the design of the observer and the feedback independently, by exploiting the advantages of linear quadratic regulator theory, in order to estimate the states of a dynamical system with model and sensor uncertainty. The relative dynamics is described with the linear system used in the previous controller, with a control input and nonlinearities entering via the repelling accelerations from the CAS during collision avoidance events. Moreover, sensor uncertainty is added to the control process by considering carrier-phase differential GPS (CDGPS) velocity measurement error. An adaptive control law capable of delivering superior closed-loop performance when compared to the certainty-equivalence (CE) adaptive controllers is finally presented. A novel noncertainty-equivalence controller based on the Immersion and Invariance paradigm for close-manoeuvring spacecraft formation flying in both circular and elliptical low-Earth reference orbits is introduced. The proposed control scheme achieves stabilization by immersing the plant dynamics into a target dynamical system (or manifold) that captures the desired dynamical behaviour. They key feature of this methodology is the addition of a new term to the classical certainty-equivalence control approach that, in conjunction with the parameter update law, is designed to achieve adaptive stabilization. This parameter has the ultimate task of shaping the manifold into which the adaptive system is immersed. The performance of the controller is proven stable via a Lyapunov-based analysis and Barbalat’s lemma. In order to evaluate the design of the controllers, test cases based on the physical and orbital features of the Prototype Research Instruments and Space Mission Technology Advancement (PRISMA) are implemented, extending the number of elements in the formation into scenarios with reconfigurations and on-orbit position switching in elliptical low-Earth reference orbits. An extensive analysis and comparison of the performance of the controllers in terms of total Δv and fuel consumption, with and without the effects of the CAS, is presented. These results show that the three proposed controllers allow the followers to asymptotically track the desired nominal trajectory and, additionally, those simulations including CAS show an effective decrease of collision risk during the performance of the manoeuvre.
Design and Development of a Research Framework for Prototyping Control Tower Augmented Reality Tools
Resumo:
The purpose of the air traffic management system is to ensure the safe and efficient flow of air traffic. Therefore, while augmenting efficiency, throughput and capacity in airport operations, attention has rightly been placed on doing it in a safe manner. In the control tower, many advances in operational safety have come in the form of visualization tools for tower controllers. However, there is a paradox in developing such systems to increase controllers' situational awareness: by creating additional computer displays, the controller's vision is pulled away from the outside view and the time spent looking down at the monitors is increased. This reduces their situational awareness by forcing them to mentally and physically switch between the head-down equipment and the outside view. This research is based on the idea that augmented reality may be able to address this issue. The augmented reality concept has become increasingly popular over the past decade and is being proficiently used in many fields, such as entertainment, cultural heritage, aviation, military & defense. This know-how could be transferred to air traffic control with a relatively low effort and substantial benefits for controllers’ situation awareness. Research on this topic is consistent with SESAR objectives of increasing air traffic controllers’ situation awareness and enable up to 10 % of additional flights at congested airports while still increasing safety and efficiency. During the Ph.D., a research framework for prototyping augmented reality tools was set up. This framework consists of methodological tools for designing the augmented reality overlays, as well as of hardware and software equipment to test them. Several overlays have been designed and implemented in a simulated tower environment, which is a virtual reconstruction of Bologna airport control tower. The positive impact of such tools was preliminary assessed by means of the proposed methodology.
Resumo:
The main purpose of this work is to develop a numerical platform for the turbulence modeling and optimal control of liquid metal flows. Thanks to their interesting thermal properties, liquid metals are widely studied as coolants for heat transfer applications in the nuclear context. However, due to their low Prandtl numbers, the standard turbulence models commonly used for coolants as air or water are inadequate. Advanced turbulence models able to capture the anisotropy in the flow and heat transfer are then necessary. In this thesis, a new anisotropic four-parameter turbulence model is presented and validated. The proposed model is based on explicit algebraic models and solves four additional transport equations for dynamical and thermal turbulent variables. For the validation of the model, several flow configurations are considered for different Reynolds and Prandtl numbers, namely fully developed flows in a plane channel and cylindrical pipe, and forced and mixed convection in a backward-facing step geometry. Since buoyancy effects cannot be neglected in liquid metals-cooled fast reactors, the second aim of this work is to provide mathematical and numerical tools for the simulation and optimization of liquid metals in mixed and natural convection. Optimal control problems for turbulent buoyant flows are studied and analyzed with the Lagrange multipliers method. Numerical algorithms for optimal control problems are integrated into the numerical platform and several simulations are performed to show the robustness, consistency, and feasibility of the method.
Resumo:
In this work an Underactuated Cable-Driven Parallel Robot (UACDPR) that operates in the three dimensional Euclidean space is considered. The End-Effector has 6 degrees of freedom and is actuated by 4 cables, therefore from a mechanical point of view the robot is defined underconstrained. However, considering only three controlled pose variables, the degree of redundancy for the control theory can be considered one. The aim of this thesis is to design a feedback controller for a point-to-point motion that satisfies the transient requirements, and is capable of reducing oscillations that derive from the reduced number of constraints. A force control is chosen for the positioning of the End-Effector, and error with respect to the reference is computed through data measure of several sensors (load cells, encoders and inclinometers) such as cable lengths, tension and orientation of the platform. In order to express the relation between pose and cable tension, the inverse model is derived from the kinematic and dynamic model of the parallel robot. The intrinsic non-linear nature of UACDPRs systems introduces an additional level of complexity in the development of the controller, as a result the control law is composed by a partial feedback linearization, and damping injection to reduce orientation instability. The fourth cable allows to satisfy a further tension distribution constraint, ensuring positive tension during all the instants of motion. Then simulations with different initial conditions are presented in order to optimize control parameters, and lastly an experimental validation of the model is carried out, the results are analysed and limits of the presented approach are defined.
Resumo:
The control of energy homeostasis relies on robust neuronal circuits that regulate food intake and energy expenditure. Although the physiology of these circuits is well understood, the molecular and cellular response of this program to chronic diseases is still largely unclear. Hypothalamic inflammation has emerged as a major driver of energy homeostasis dysfunction in both obesity and anorexia. Importantly, this inflammation disrupts the action of metabolic signals promoting anabolism or supporting catabolism. In this review, we address the evidence that favors hypothalamic inflammation as a factor that resets energy homeostasis in pathological states.
Resumo:
Paraquat is a fast acting nonselective contact herbicide that is extensively used worldwide. However, the aqueous solubility and soil sorption of this compound can cause problems of toxicity in nontarget organisms. This work investigates the preparation and characterization of nanoparticles composed of chitosan and sodium tripolyphosphate (TPP) to produce an efficient herbicidal formulation that was less toxic and could be used for safer control of weeds in agriculture. The toxicities of the formulations were evaluated using cell culture viability assays and the Allium cepa chromosome aberration test. The herbicidal activity was investigated in cultivations of maize (Zea mays) and mustard (Brassica sp.), and soil sorption of the nanoencapsulated herbicide was measured. The efficiency association of paraquat with the nanoparticles was 62.6 ± 0.7%. Encapsulation of the herbicide resulted in changes in its diffusion and release as well as its sorption by soil. Cytotoxicity and genotoxicity assays showed that the nanoencapsulated herbicide was less toxic than the pure compound, indicating its potential to control weeds while at the same time reducing environmental impacts. Measurements of herbicidal activity showed that the effectiveness of paraquat was preserved after encapsulation. It was concluded that the encapsulation of paraquat in nanoparticles can provide a useful means of reducing adverse impacts on human health and the environment, and that the formulation therefore has potential for use in agriculture.
Resumo:
The maintenance of glucose homeostasis is complex and involves, besides the secretion and action of insulin and glucagon, a hormonal and neural mechanism, regulating the rate of gastric emptying. This mechanism depends on extrinsic and intrinsic factors. Glucagon-like peptide-1 secretion regulates the speed of gastric emptying, contributing to the control of postprandial glycemia. The pharmacodynamic characteristics of various agents of this class can explain the effects more relevant in fasting or postprandial glucose, and can thus guide the individualized treatment, according to the clinical and pathophysiological features of each patient.