990 resultados para Acoustic Pressure
Resumo:
Objective: Adherence to Continuous Positive Airway Pressure Therapy (CPAP) for Obstructive Sleep Apnoea (OSA) is poor. We assessed the effectiveness of a motivational interviewing intervention (MINT) in addition to best practice standard care to improve acceptance and adherence to CPAP therapy in people with a new diagnosis of OSA. Method: 106 Australian adults (69% male) with a new diagnosis of obstructive sleep apnoea and clinical recommendation for CPAP treatment were recruited from a tertiary sleep disorders centre. Participants were randomly assigned to receive either three sessions of a motivational interviewing intervention ‘MINT’ (n=53; mean age=55.4 years), or no intervention ‘Control’ (n=53; mean age=57.74). The primary outcome was the difference between the groups in objective CPAP adherence at 1 month, 2 months, 3 months and 12 months follow-up. Results: Fifty (94%) participants in the MINT group and 50 (94%) of participants in the control group met all inclusion and exclusion criteria and were included in the primary analysis. The hours of CPAP use per night in the MINT group at 3 months was 4.63 hours and 3.16 hours in the control group (p=0.005). This represents almost 50% better adherence in the MINT group relative to the control group. Patients in the MINT group were substantially more likely to accept CPAP treatment. Conclusions: MINT is a brief, manualized, effective intervention which improves CPAP acceptance and objective adherence rates as compared to standard care alone.
Resumo:
Young drivers, aged 17 to 24 years, have the highest fatality rate in Australia. It is believed that part of this risk is due to pressure from peer passengers to engage in speeding; which may be active (i.e., verbal encouragement) or passive (i.e., perceived pressure on the part of the driver). The Theory of Planned Behaviour (TPB) was used to investigate this impact of peer passengers on young drivers, particularly the influence of the type of peer pressure and a driver’s level of identification with their passengers. A scenario-based questionnaire was constructed, informed by focus groups and pilot studies, and distributed to university students (N = 398). The questionnaire measured participants’ intentions and the TPB constructs, including two components of perceived behaviour control, within a baseline scenario as well as an experimental scenario in which the variables of type of pressure and identification were manipulated. Consistent with the hypotheses, the study found that attitudes and self-efficacy significantly predicted intentions over and above the variance explained by the sociodemographic variables of age, gender, self-esteem, sensation seeking, as well as past behaviour and exposure. Across the scenarios, attitudes explained between 4.3% and 14.5%, while self-efficacy to refrain from speeding explained between 4.9% and 17.1%, of the unique variance in intentions to speed. However, contrary to expectations, intentions to speed were found to be higher in the “no passenger” than “passenger present” conditions, although this finding is not completely inconsistent with recent literature. A high level of identification with passengers led to higher intentions to speed than low identification as expected, but, inconsistent with expectations, different types of pressure (i.e., active versus passive) did not influence intentions to speed.
Resumo:
The effect of sample geometry on the melting rates of burning iron rods was assessed. Promoted-ignition tests were conducted with rods having cylindrical, rectangular, and triangular cross-sectional shapes over a range of cross-sectional areas. The regression rate of the melting interface (RRMI) was assessed using a statistical approach which enabled the quantification of confidence levels for the observed differences in RRMI. Statistically significant differences in RRMI were observed for rods with the same cross-sectional area but different cross-sectional shape. The magnitude of the proportional difference in RRMI increased with the cross-sectional area. Triangular rods had the highest RRMI, followed by rectangular rods, and then cylindrical rods. The dependence of RRMI on rod shape is shown to relate to the action of molten metal at corners. The corners of the rectangular and triangular rods melted faster than the faces due to their locally higher surface area to volume ratios. This phenomenon altered the attachment geometry between liquid and solid phases, increasing the surface area available for heat transfer, causing faster melting. Findings relating to the application of standard flammability test results in industrial situations are also presented.
Resumo:
Automatic species recognition plays an important role in assisting ecologists to monitor the environment. One critical issue in this research area is that software developers need prior knowledge of specific targets people are interested in to build templates for these targets. This paper proposes a novel approach for automatic species recognition based on generic knowledge about acoustic events to detect species. Acoustic component detection is the most critical and fundamental part of this proposed approach. This paper gives clear definitions of acoustic components and presents three clustering algorithms for detecting four acoustic components in sound recordings; whistles, clicks, slurs, and blocks. The experiment result demonstrates that these acoustic component recognisers have achieved high precision and recall rate.
Resumo:
Pedestrians’ use of mp3 players or mobile phones can pose the risk of being hit by motor vehicles. We present an approach for detecting a crash risk level using the computing power and the microphone of mobile devices that can be used to alert the user in advance of an approaching vehicle so as to avoid a crash. A single feature extractor classifier is not usually able to deal with the diversity of risky acoustic scenarios. In this paper, we address the problem of detection of vehicles approaching a pedestrian by a novel, simple, non resource intensive acoustic method. The method uses a set of existing statistical tools to mine signal features. Audio features are adaptively thresholded for relevance and classified with a three component heuristic. The resulting Acoustic Hazard Detection (AHD) system has a very low false positive detection rate. The results of this study could help mobile device manufacturers to embed the presented features into future potable devices and contribute to road safety.
Resumo:
We develop and test a theoretically-based integrative framework of key proximal factors (orientation, pressure, and control) that helps to explain the effects of more general factors (the organisation's strategy, structure, and environment) on intentions to adopt an innovation one year later. Senior managers from 134 organizations were surveyed and confirmatory factor analyses showed that these hypothesized core factors provided a good fit to the data, indicating that our framework can provide a theoretical base to the previous, largely a theoretical, literature. Moreover, in a subgroup of 63 organizations, control mediated the effects of organizational strategy and centralisation on organizational innovation adoption intentions one year later. We suggest this model of core factors enables researchers to understand why certain variables are important to organisational innovation adoption and promotes identification of fertile research areas around orientation, pressure and control, and it enables managers to focus on the most proximal triggers for increasing innovation adoption.
Resumo:
Seat pressure is known as a major factor of seat comfort in vehicles. In passenger vehicles, there is lacking research into the seat comfort of rear seat occupants. As accurate seat pressure measurement requires significant effort, simulation of seat pressure is evolving as a preferred method. However, analytic methods are based on complex finite element modeling and therefore are time consuming and involve high investment. Based on accurate anthropometric measurements of 64 male subjects and outboard rear seat pressure measurements in three different passenger vehicles, this study investigates if a set of parameters derived from seat pressure mapping are sensitive enough to differentiate between different seats and whether they correlate with anthropometry in linear models. In addition to the pressure map analysis, H-Points were measured with a coordinate measurement system based on palpated body landmarks and the range of H-Point locations in the three seats is provided. It was found that for the cushion, cushion contact area and cushion front area/force could be modeled by subject anthropometry,while only seatback contact area could be modeled based on anthropometry for all three vehicles. Major differences were found between the vehicles for other parameters.
Resumo:
Bedsores (ulcers) are caused by multiple factors which include, but are not limited to; pressure, shear force, friction, temperature, age and medication. Specialised support services, such as specialised mattresses, sheepskin coverings etc., are thought to decrease or relieve pressure, resulting in a lowering of pressure ulcer incidence [3]. The primary aim of this study was to compare the upper/central body pressure distribution between normal lying in a hospital bed versus the use of a pressure redistribution belt. The study involved 16 healthy voluntary subjects lying on a hospital bed with and without wearing the belt. Results showed that the use of a pressure redistribution belt results in reduced pressure peaks and prevents the pressure from increasing over time.
Resumo:
Purpose: To assess the accuracy of intraocular pressure(IOP) measurements using rebound tonometry over disposable hydrogel (etafilcon A) and silicone hydrogel (senofilcon A) contact lenses (CLs) of different powers. Methods: The experimental group comprised 36 subjects (19 male, 17 female). IOP measurements were undertaken on the subject’s right eyes in random order using a rebound tonometer (ICare). The CLs had powers of +2.00D, −2.00D and−6.00D. Six measurements were taken over each contact lens and also before and after the CLs had been worn. Results: A good correlation was found between IOP measurements with and without CLs (all r≥0.80; p < 0.05). Bland Altman plots did not show any significant trend in the difference in IOP readings with and without CLs as a function of IOP value. A two-way ANOVA revealed a significant effect of material and power (p < 0.01) but no interaction. All the comparisons between the measurements without CLs and with hydrogel CLs were significant (p < 0.01). The comparisons with silicone hydrogel CLs were not significant. Conclusions: Rebound tonometry can be reliably performed over silicone hydrogel CLs. With hydrogel CLs, the measurements were lower than those without CLs. However, despite the fact that these differences were statistically significant, their clinical significance was minimal.
Resumo:
Performance of locomotor pointing tasks (goal-directed locomotion) in sport is typically constrained by dynamic factors, such as positioning of opponents and objects for interception. In the team sport of association football, performers have to coordinate their gait with ball displacement when dribbling and when trying to prevent opponent interception when running to kick a ball. This thesis comprises two studies analysing the movement patterns during locomotor pointing of eight experienced youth football players under static and dynamic constraints by manipulating levels of ball displacement (ball stationary or moving) and defensive pressure (defenders absent, or positioned near or far during performance). ANOVA with repeated measures was used to analyse effects of these task constraints on gait parameters during the run-up and cross performance sub-phase. Experiment 1 revealed outcomes consistent with previous research on locomotor pointing. When under defensive pressure, participants performed the run-up more quickly, concurrently modifying footfall placements relative to the ball location over trials. In experiment 2 players coordinated their gait relative to a moving ball significantly differently when under defensive pressure. Despite no specific task instructions being provided beforehand, context dependent constraints interacted to influence footfall placements over trials and running velocity of participants in different conditions. Data suggest that coaches need to manipulate task constraints carefully to facilitate emergent movement behaviours during practice in team games like football.
Resumo:
This paper presents techniques which can lead to diagnosis of faults in a small size multi-cylinder diesel engine. Preliminary analysis of the acoustic emission (AE) signals is outline, including time-frequency analysis and selection of optimum frequency band.The results of applying mean field independent component analysis (MFICA) to separate the AE root mean square (RMS) signals and the effects of changing parameter values are also outlined. The results on separation of RMS signals show thsi technique has the potential of increasing the probability to successfully identify the AE events associated with the various mechanical events within the combustion process of multi-cylinder diesel engines.
Resumo:
Vibration analysis has been a prime tool in condition monitoring of rotating machines, however, its application to internal combustion engines remains a challenge because engine vibration signatures are highly non-stationary that are not suitable for popular spectrum-based analysis. Signal-to-noise ratio is a main concern in engine signature analysis due to severe background noise being generated by consecutive mechanical events, such as combustion, valve opening and closing, especially in multi-cylinder engines. Acoustic Emission (AE) has been found to give excellent signal-to-noise ratio allowing discrimination of fine detail of normal or abnormal events during a given cycle. AE has been used to detect faults, such as exhaust valve leakage, fuel injection behaviour, and aspects of the combustion process. This paper presents a review of AE application to diesel engine monitoring and preliminary investigation of AE signature measured on an 18-cylinder diesel engine. AE is compared with vibration acceleration for varying operating conditions: load and speed. Frequency characteristics of AE from those events are analysed in time-frequency domain via short time Fourier trasform. The result shows a great potential of AE analysis for detection of various defects in diesel engines.
Resumo:
As civil infrastructures such as bridges age, there is a concern for safety and a need for cost-effective and reliable monitoring tool. Different diagnostic techniques are available nowadays for structural health monitoring (SHM) of bridges. Acoustic emission is one such technique with potential of predicting failure. The phenomenon of rapid release of energy within a material by crack initiation or growth in form of stress waves is known as acoustic emission (AE). AEtechnique involves recording the stress waves bymeans of sensors and subsequent analysis of the recorded signals,which then convey information about the nature of the source. AE can be used as a local SHM technique to monitor specific regions with visible presence of cracks or crack prone areas such as welded regions and joints with bolted connection or as a global technique to monitor the whole structure. Strength of AE technique lies in its ability to detect active crack activity, thus helping in prioritising maintenance work by helping focus on active cracks rather than dormant cracks. In spite of being a promising tool, some challenges do still exist behind the successful application of AE technique. One is the generation of large amount of data during the testing; hence an effective data analysis and management is necessary, especially for long term monitoring uses. Complications also arise as a number of spurious sources can giveAEsignals, therefore, different source discrimination strategies are necessary to identify genuine signals from spurious ones. Another major challenge is the quantification of damage level by appropriate analysis of data. Intensity analysis using severity and historic indices as well as b-value analysis are some important methods and will be discussed and applied for analysis of laboratory experimental data in this paper.
Resumo:
Early-stage treatments for osteoarthritis are attracting considerable interest as a means to delay, or avoid altogether, the pain and lack of mobility associated with late-stage disease, and the considerable burden that it places on the community. With the development of these treatments comes a need to assess the tissue to which they are applied, both in trialling of new treatments and as an aid to clinical decision making. Here, we measure a range of mechanical indentation, ultrasound and near-infrared spectroscopy parameters in normal and osteoarthritic bovine joints in vitro to describe the role of different physical phenomena in disease progression, using this as a basis to investigate the potential value of the techniques as clinical tools. Based on 72 samples we found that mechanical and ultrasound parameters showed differences between fibrillated tissue, macroscopically normal tissue in osteoarthritic joints, and normal tissue, yet did were unable to differentiate degradation beyond that which was visible to the naked eye. Near-infrared spectroscopy showed a clear progression of degradation across the visibly normal osteoarthritic joint surface and as such, was the only technique considered useful for clinical application.
Resumo:
Acoustic emission (AE) analysis is one of the several diagnostic techniques available nowadays for structural health monitoring (SHM) of engineering structures. Some of its advantages over other techniques include high sensitivity to crack growth and capability of monitoring a structure in real time. The phenomenon of rapid release of energy within a material by crack initiation or growth in form of stress waves is known as acoustic emission (AE). In AE technique, these stress waves are recorded by means of suitable sensors placed on the surface of a structure. Recorded signals are subsequently analysed to gather information about the nature of the source. By enabling early detection of crack growth, AE technique helps in planning timely retrofitting or other maintenance jobs or even replacement of the structure if required. In spite of being a promising tool, some challenges do still exist behind the successful application of AE technique. Large amount of data is generated during AE testing, hence effective data analysis is necessary, especially for long term monitoring uses. Appropriate analysis of AE data for quantification of damage level is an area that has received considerable attention. Various approaches available for damage quantification for severity assessment are discussed in this paper, with special focus on civil infrastructure such as bridges. One method called improved b-value analysis is used to analyse data collected from laboratory testing.