860 resultados para Acoustic Ecology
Resumo:
Chromosomal and biochemical investigations of shrews from the genus Crocidura from Crete and Turkey show that C. russula monacha Thomas, 1906 and C. caneae Miller, 1909 are both members of the species C. suaveolens Pallas, 1811. C. russula zimmermanni Wettstein, 1953. The population of C. suaveolens in Crete, whose presence on the island dates from at least 3500 years b.p. is biochemically very similar to those of C. suaveolens from Turkey. The same set of electrophoretic data suggests that C. suaveolens from Cyprus became isolated from main land populations much earlier. C. zimmermanni shows closer phylogenetic relationships with C. leucodon and C. suaveolens, than with C. russula. endemic in Crete, C. zimmermanni is syntopic with C, suaveolens at medium and high altitudes, but has been eliminated by the latter in the fertile lowland plains.
Resumo:
This study was conducted in a meteorological tower located in the Caxiuanã Forest (municipality of Melgaço, Pará, Brazil) with the aim of assessing the vertical stratification of species of Haemagogus and Sabethes, potential vectors of the yellow fever virus. To investigate the role of microclimates in mosquito stratification, bimonthly collections were conducted at ground level (0 m), 8 m, 16 m and 30 m (canopy level), with the aid of entomological nets and suction tubes, from July 2005-April 2006. A total of 25,498 mosquitoes were collected; specimens of Sabethes sp. and Haemagogus janthinomyswere found mostly at heights of 16 m and 30 m while Hg. leucocelaenus was most frequently observed at ground level. The largest number of vector species was collected during the rainiest months, but this difference between seasons was not statistically significant. However, the number of Hg. janthinomys was positively correlated with variations in temperature and relative humidity.
Resumo:
CONTENTS: Summary 28 I. Historic background and introduction 29 II. Diversity of cardenolide forms 29 III. Biosynthesis 30 IV. Cardenolide variation among plant parts 31 V. Phylogenetic distribution of cardenolides 32 VI. Geographic distribution of cardenolides 34 VII. Ecological genetics of cardenolide production 34 VIII. Environmental regulation of cardenolide production 34 IX. Biotic induction of cardenolides 36 X. Mode of action and toxicity of cardenolides 38 XI. Direct and indirect effects of cardenolides on specialist and generalist insect herbivores 39 XII. Cardenolides and insect oviposition 39 XIII. Target site insensitivity 40 XIV. Alternative mechanisms of cardenolide resistance 40 XV. Cardenolide sequestration 41 Acknowledgements 42 References 42 SUMMARY: Cardenolides are remarkable steroidal toxins that have become model systems, critical in the development of theories for chemical ecology and coevolution. Because cardenolides inhibit the ubiquitous and essential animal enzyme Na(+) /K(+) -ATPase, most insects that feed on cardenolide-containing plants are highly specialized. With a huge diversity of chemical forms, these secondary metabolites are sporadically distributed across 12 botanical families, but dominate the Apocynaceae where they are found in > 30 genera. Studies over the past decade have demonstrated patterns in the distribution of cardenolides among plant organs, including all tissue types, and across broad geographic gradients within and across species. Cardenolide production has a genetic basis and is subject to natural selection by herbivores. In addition, there is strong evidence for phenotypic plasticity, with the biotic and abiotic environment predictably impacting cardenolide production. Mounting evidence indicates a high degree of specificity in herbivore-induced cardenolides in Asclepias. While herbivores of cardenolide-containing plants often sequester the toxins, are aposematic, and possess several physiological adaptations (including target site insensitivity), there is strong evidence that these specialists are nonetheless negatively impacted by cardenolides. While reviewing both the mechanisms and evolutionary ecology of cardenolide-mediated interactions, we advance novel hypotheses and suggest directions for future work.
Resumo:
We studied the ectoparasitic bat flies of three phyllostomid vampire bat species. Bats were collected monthly from April 2004-March 2005 in caves within the Cafuringa Environmental Protection Area in the Federal District of Brazil. A total of 1,259 specimens from six species in the Streblidae family were collected from 332 bats. High host affinity from the sampled bat fly species and high prevalence of bat flies confirms the primary fly-host associations (Strebla wiedemanni, Trichobius parasiticus and Trichobius furmani with Desmodus, Trichobius diaemi and Strebla diaemi with Diaemus and T. furmani with Diphylla). Male flies outnumbered females in several associations. Some of the observed associations (e.g., Strebla mirabilis with Desmodus and S. mirabilis, Trichobius uniformis and S. wiedemanni with Diphylla) were inconclusive and the causes of the associations were unclear. There are several explanations for these associations, including (i) accidental contamination during sampling, (ii) simultaneous capture of several host species in the same net or (iii) genuine, but rare, ecological associations. Although various species of vampire bats share roosts, have similar feeding habits and are close phylogenetic relatives, they generally do not share ectoparasitic streblid bat flies. T. diaemi and S. diaemi associations with Diaemus youngi have not been previously reported in this region.
Resumo:
Acoustic signalling has been extensively studied in insect species, which has led to a better understanding of sexual communication, sexual selection and modes of speciation. The significance of acoustic signals for a blood-sucking insect was first reported in the XIX century by Christopher Johnston, studying the hearing organs of mosquitoes, but has received relatively little attention in other disease vectors until recently. Acoustic signals are often associated with mating behaviour and sexual selection and changes in signalling can lead to rapid evolutionary divergence and may ultimately contribute to the process of speciation. Songs can also have implications for the success of novel methods of disease control such as determining the mating competitiveness of modified insects used for mass-release control programs. Species-specific sound “signatures” may help identify incipient species within species complexes that may be of epidemiological significance, e.g. of higher vectorial capacity, thereby enabling the application of more focussed control measures to optimise the reduction of pathogen transmission. Although the study of acoustic communication in insect vectors has been relatively limited, this review of research demonstrates their value as models for understanding both the functional and evolutionary significance of acoustic communication in insects.
Resumo:
Cutaneous leishmaniasis (CL) is a neglected clinical form of public health importance that is quite prevalent in the northern and eastern parts of Egypt. A comprehensive study over seven years (January 2005-December 2011) was conducted to track CL transmission with respect to both sandfly vectors and animal reservoirs. The study identified six sandfly species collected from different districts in North Sinai: Phlebotomus papatasi, Phlebotomus kazeruni, Phlebotomus sergenti, Phlebotomus alexandri, Sergentomyia antennata and Sergentomyia clydei. Leishmania (-)-like flagellates were identified in 15 P. papatasi individuals (0.5% of 3,008 dissected females). Rodent populations were sampled in the same districts where sandflies were collected and eight species were identified: Rattus norvegicus (n = 39), Rattus rattus frugivorous (n = 13), Rattus rattus alexandrinus (n = 4), Gerbillus pyramidum floweri (n = 38), Gerbillus andersoni (n = 28), Mus musculus (n = 5), Meriones sacramenti (n = 22) and Meriones crassus (n = 10). Thirty-two rodents were found to be positive for Leishmania infection (20.12% of 159 examined rodents). Only Leishmania major was isolated and identified in 100% of the parasite samples. The diversity of both the vector and rodent populations was examined using diversity indices and clustering approaches.
Resumo:
The system described herein represents the first example of a recommender system in digital ecosystems where agents negotiate services on behalf of small companies. The small companies compete not only with price or quality, but with a wider service-by-service composition by subcontracting with other companies. The final result of these offerings depends on negotiations at the scale of millions of small companies. This scale requires new platforms for supporting digital business ecosystems, as well as related services like open-id, trust management, monitors and recommenders. This is done in the Open Negotiation Environment (ONE), which is an open-source platform that allows agents, on behalf of small companies, to negotiate and use the ecosystem services, and enables the development of new agent technologies. The methods and tools of cyber engineering are necessary to build up Open Negotiation Environments that are stable, a basic condition for predictable business and reliable business environments. Aiming to build stable digital business ecosystems by means of improved collective intelligence, we introduce a model of negotiation style dynamics from the point of view of computational ecology. This model inspires an ecosystem monitor as well as a novel negotiation style recommender. The ecosystem monitor provides hints to the negotiation style recommender to achieve greater stability of an open negotiation environment in a digital business ecosystem. The greater stability provides the small companies with higher predictability, and therefore better business results. The negotiation style recommender is implemented with a simulated annealing algorithm at a constant temperature, and its impact is shown by applying it to a real case of an open negotiation environment populated by Italian companies
Resumo:
Currently, acoustic isolation is one of the problems raised with building construction in Spain. The publication of the Basic Document for the protection against noise of the Technical Building Code has increased the demand of comfort for citizens. This has created the need to seek new composite materials that meet the new required acoustical building codes. In this paper we report the results of the newly developed composites that are able to improve the acoustic isolation of airborne noise. These composites were prepared from polypropylene (PP) reinforced with mechanical pulp fibers from softwood (Pinus radiata). Mechanical and acoustical properties of the composites from mechanical pulp (MP) and polypropylene (PP) have been investigated and compared to fiberglass (FG) composites. MP composites had lower tensile properties compared with FG composites, although these properties can be improved by incorporation of a coupling agent. The results of acoustical properties of MP composites were reported and compared with the conventional composites based on fiberglass and gypsum plasterboards. Finally, we suggest the application of MP composites as a light-weight building material to reduce acoustic transmitions
Resumo:
Plants influence the behavior of and modify community composition of soil-dwelling organisms through the exudation of organic molecules. Given the chemical complexity of the soil matrix, soil-dwelling organisms have evolved the ability to detect and respond to these cues for successful foraging. A key question is how specific these responses are and how they may evolve. Here, we review and discuss the ecology and evolution of chemotaxis of soil nematodes. Soil nematodes are a group of diverse functional and taxonomic types, which may reveal a variety of responses. We predicted that nematodes of different feeding guilds use host-specific cues for chemotaxis. However, the examination of a comprehensive nematode phylogeny revealed that distantly related nematodes, and nematodes from different feeding guilds, can exploit the same signals for positive orientation. Carbon dioxide (CO(2)), which is ubiquitous in soil and indicates biological activity, is widely used as such a cue. The use of the same signals by a variety of species and species groups suggests that parts of the chemo-sensory machinery have remained highly conserved during the radiation of nematodes. However, besides CO(2), many other chemical compounds, belonging to different chemical classes, have been shown to induce chemotaxis in nematodes. Plants surrounded by a complex nematode community, including beneficial entomopathogenic nematodes, plant-parasitic nematodes, as well as microbial feeders, are thus under diffuse selection for producing specific molecules in the rhizosphere that maximize their fitness. However, it is largely unknown how selection may operate and how belowground signaling may evolve. Given the paucity of data for certain groups of nematodes, future work is needed to better understand the evolutionary mechanisms of communication between plant roots and soil biota.
Resumo:
Hybrid speciation was once thought to be rare in animals, but over the past decade, improved molecular analysis techniques and increased research attention have allowed scientists to uncover many examples. In this issue, two papers (Elgvin et al. 2011; Hermansen et al. 2011) present compelling evidence for the hybrid origin of the Italian sparrow based on nuclear and mitochondrial DNA sequences, microsatellites, and plumage coloration. These studies point to an important role for geographic isolation in the process of hybrid speciation, and provide a starting point for closer examination of the genetic and behavioural mechanisms involved.
Resumo:
Development of dialysis has saved the lives of many patients. However, haemodialysis and peritoneal dialysis are very demanding in resources such as water and electricity, and generate a large amount of waste. In this article, we will review the environmental aspects of dialysis. Different solutions will be discussed, such as recycling of water discharged during reverse osmosis, the integration of solar energy, recycling of waste plastics, and the use of other techniques such as sorbent dialysis. In a world where natural resources are precious and where global warming is a major problem, it is important that not only dialysis, but all branches of medicine become more attentive to ecology.
Resumo:
Adult animals can eavesdrop on behavioral interactions between potential opponents to assess their competitive ability and motivation to contest resources without interacting directly with them. Surprisingly, eavesdropping is not yet considered as an important factor used to resolve conflicts between family members. In this study, we show that nestling barn owls (Tyto alba) competing for food eavesdrop on nestmates' vocal interactions to assess the dominance status and food needs of opponents. During a first training playback session, we broadcasted to singleton bystander nestlings a simulated vocal interaction between 2 prerecorded individuals, 1 relatively old (i.e., senior) and 1 younger nestling (i.e., junior). One playback individual, the "responder," called systematically just after the "initiator" playback individual, hence displaying a higher hunger level. To test whether nestlings have eavesdropped on this interaction, we broadcasted the same prerecorded individuals separately in a subsequent playback test session. Nestlings vocalized more rapidly after former initiators' than responders' calls and they produced more calls when the broadcasted individual was formerly a junior initiator. They chiefly challenged vocally juniors and initiators against whom the likelihood of winning a vocal contest is higher. Owlets, therefore, identified the age hierarchy between 2 competitors based on their vocalizations. They also memorized the dynamics of competitors' previous vocal interactions, and used this information to optimally adjust signaling level once interacting with only 1 of the competitor. We conclude that siblings eavesdrop on one another to resolve conflicts over parental resources.
Resumo:
Report for the scientific sojourn carried out at the Paul Drude Institut für Festkörperelektronik of the Stanford University, USA, from 2010 to 2012. The objective of this project is the transport and control of electronic charge and spin along GaAs-based semiconductor heterostructures. The electronic transport has been achieved by taking advantage of the piezolectric field induced by surface acoustic waves in non-centrosymmetric materials like GaAs. This piezolectric field separates photogenerated electrons and holes at different positions along the acoustic wave, where they acummulate and are transported at the same velocity as the wave. Two different kinds of structures have been studied: quantum wells grown along the (110) direction, both intrinsic and n-doped, as well as GaAs nanowires. The analysis of the charge acoustic transport was performed by micro-photoluminescence, whereas the detection of the spin transport was done either by analyzing the polarization state of the emitted photoluminescence or by Kerr reflectometry. Our results in GaAs quantum wells show that charge and spin transport is clearly observed at the non-doped structures,obtaining spin lifetimes of the order of several nanoseconds, whereas no acoutically induced spin transport was detected for the n-doped quantum wells. In the GaAs nanowires, we were able of transporting successfully both electrons and holes along the nanowire axis, but no conservation of the spin polarization has been observed until now. The photoluminescence emitted by these structures after acoustic transport, however, shows anti-bunching characteristics, making this system a very good candidate for its use as single photon emitters.