304 resultados para Abund
Resumo:
The monograph highlights extensive materials collected during expeditions of P.P. Shirshov Institute of Oceanology. We consider facial conditions of nodule formation, regularities of their distribution, stratigraphic position, petrography, mineral composition, textures, geochemistry of nodules and hosting sediments. Origin of iron-manganese nodules in the Pacific Ocean is considered as well.
Resumo:
At Sites 689 and 690, drilled during ODP (Ocean Drilling Program) Leg 113 on the Maud Rise (southeast Weddell Sea), moderately to well preserved radiolarian assemblages were obtained from continuously recovered upper Oligocene and Neogene sequences. Based on radiolarian investigations, a biostratigraphic zonation for a time interval covering the late Oligocene to the middle Miocene is proposed. The radiolarian zonation comprises 10 zones. Five zones are new, and five zones previously defined by Chen (1975) were modified. The zones and the ranges of the nominate species are directly calibrated with a geomagnetic polarity record. This is the first attempt at a direct correlation of late Oligocene to middle Miocene radiolarian zones with the geomagnetic time scale. Six hiatuses were delineated in the studied upper Oligocene to middle Miocene sections. One major hiatus, spanning ca. 6 m.y., is between the upper Oligocene and the lower Miocene sequences. Another important hiatus separates the lower and middle Miocene sediments. As a base for the biostratigraphic investigations, a detailed taxonomic study of the recovered radiolarian taxa is achieved. Three new radiolarian species that occur in upper Oligocene and lower Miocene sediments are described (Cycladophora antiqua, Cyrtocapsella robusta, and Velicucullus altus).
Resumo:
Although conventional sediment parameters (mean grain size, sorting, and skewness) and provenance have typically been used to infer sediment transport pathways, most freshwater, brackish, and marine environments are also characterized by abundant sediment constituents of biological, and possibly anthropogenic and volcanic, origin that can provide additional insight into local sedimentary processes. The biota will be spatially distributed according to its response to environmental parameters such as water temperature, salinity, dissolved oxygen, organic carbon content, grain size, and intensity of currents and tidal flow, whereas the presence of anthropogenic and volcanic constituents will reflect proximity to source areas and whether they are fluvially- or aerially-transported. Because each of these constituents have a unique environmental signature, they are a more precise proxy for that source area than the conventional sedimentary process indicators. This San Francisco Bay Coastal System study demonstrates that by applying a multi-proxy approach, the primary sites of sediment transport can be identified. Many of these sites are far from where the constituents originated, showing that sediment transport is widespread in the region. Although not often used, identifying and interpreting the distribution of naturally-occurring and allochthonous biologic, anthropogenic, and volcanic sediment constituents is a powerful tool to aid in the investigation of sediment transport pathways in other coastal systems.
Resumo:
The Dvurechenskii mud volcano (DMV), located in permanently anoxic waters at 2060 m depth (Sorokin Trough, Black Sea), was visited during the M72/2 cruise with the RV Meteor to investigate the methane and sulfide release from mud volcanoes into the Black Sea hydrosphere. We studied benthic fluxes of methane and sulfide, and the factors controlling transport, consumption and production of both compounds within the sediment. The pie shaped mud volcano showed temperature anomalies as well as solute and gas fluxes indicating high fluid flow at a small elevation north of the geographical center. The anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) was excluded from this zone due to fluid-flow induced sulfate limitation and a fresh mud flow and consequently methane escaped into the water column with a rate of 0.46 mol/m**2/d. In the outer center of the mud volcano fluid flow and total methane flux were decreased, correlating with an increase in sulfate penetration into the sediment, and with higher SR and AOM rates. Here between 50-70% of the methane flux (0.07-0.1 mol/m**2/d) was consumed within the upper 10 cm of the sediment. Also at the edge of the mud volcano fluid flow and rates of methane and sulfate turnover were substantial. The overall amount of dissolved methane released from the mud volcano into the water column was significant with a discharge of 1.4x10**7 mol/yr. The DMV maintains also high areal rates of methane-fueled sulfide production of on average 0.05 mol/m**2/d. However, we concluded that sulfide and methane emission into the hydrosphere from deep water mud volcanoes does not significantly contribute to the sulfide and methane inventory of the Black Sea.
Resumo:
Ocean Drilling Program (ODP) Leg 182 drilled at nine sites on the Great Australian Bight, which is located directly south of the Australian continent. Leg 182 proposed to examine the paleoceanographic evolution of a midlatitude, cool-water carbonate platform. During drilling on the Great Australian Bight, three sites (1127, 1129, and 1131) recovered highly expanded Pleistocene sections. This paper presents the detailed calcareous nannofossil biostratigraphy of the most distal site. This report should provide a useful Pleistocene biostratigraphic reference for this previously unknown area.
Resumo:
Late Campanian and Maastrichtian benthic foraminifers are recorded from 12 samples from Ocean Drilling Program (ODP) Leg 183, Cores 183-1138A-52R through 63R (487.3-602.4 meters below seafloor), Kerguelen Plateau, Indian Ocean, and Danian benthics from one sample in the same section. The entire late Maastrichtian foraminifer fauna is noted from a dredge sample 220 km to the north. The structure of the fauna is compared with the Cenomanian-Turonian of the nearby Eltanin core E54-7. Faunas are reviewed in terms of planktonic percentage, composition, epifaunal/infaunal ratios, and dominance/diversity indices. The region was in the cool Austral Faunal Province through the Campanian-Maastrichtian and was probably warmer in the Cenomanian-Turonian. The ODP section is now 1600 meters below sea level and has subsided several hundred meters since deposition. Its fauna is dominated by epifaunal species suggesting little influence of upwelling. The dredge location has subsided little. Its fauna has a high infaunal content consistent with significant influence of upwelling near the plateau edge. The dominant benthic species remain constant through the ODP Cretaceous section, but subdominance changes, and the section is divided into three informal zones based on dominance/subdominance characteristics of the benthic fauna. Brief taxonomic comments are made on several species and some are figured.
Resumo:
A thick Neogene section was recovered in the upper ~300 m of Ocean Drilling Program Hole 1138A, drilled on the Central Kerguelen Plateau in the Indian sector of the Southern Ocean. Sediment lithologies consist primarily of mixed carbonate and biosiliceous clays and oozes, with several thin (1-3 cm) tephra horizons. The tephras are glass rich, well sorted, and dominantly trachytic to rhyolitic in composition. Volcaniclastic material in these horizons is interpreted to have originated from Heard Island, 180 km northwest of Site 1138, and was likely emplaced through both primary ash fall and turbiditic, submarine flows. A Neogene age-depth model for Hole 1138A is constructed primarily from 36 diatom biostratigraphic datums. Nannofossil and planktonic foraminifer biostratigraphy provides supporting age information. Additionally, four high-precision 40Ar-39Ar ages are derived from ash and tephra horizons, and these radiometric ages are in close agreement with the biostratigraphic ages. The integrated age-depth model reveals a reasonably complete lower Miocene to upper Pleistocene section in Hole 1138A, with the exception of a ~1-m.y. hiatus at the Miocene/Pliocene boundary. Another possible hiatus is also identified at the Oligocene/Miocene boundary. High Neogene sedimentation rates and the presence of both calcareous and siliceous microfossils, combined with datable tephra horizons, establish Site 1138 as a suitable target for future drilling legs with paleoceanographic objectives. This report also proposes two new diatom species, Fragilariopsis heardensis and Azpeitia harwoodii, from Pliocene strata of Hole 1138A.
Resumo:
The Whittard canyon is a branching submarine canyon on the Celtic continental margin, which may act as a conduit for sediment and organic matter (OM) transport from the European continental slope to the abyssal sea floor. In situ stable-isotope labelling experiments (JC36-042-Spre01; JC36-100-Spre01) were conducted in the eastern and western branches of the Whittard canyon testing short term (3 - 7 day) responses of sediment communities to deposition of nitrogen-rich marine and nitrogen-poor terrigenous phytodetritus. Isotopic labels were traced into faunal biomass and bulk sediments, and the bacterial polar lipid fatty acids (PLFAs). These data files provide the data on macrofaunal and bacterial uptake of the isotopically-labelled organic carbon and nitrogen, and macrofaunal community composition at the two stations within the Whittard canyon
Resumo:
Eocene through Pliocene benthic foraminifers were examined from seven sites located at middle and lower bathyal depths on the Lord Howe Rise in the Tasman Sea, from another site at lower bathyal depths in the Coral Sea, and from a site in the intermediate-depth, hemipelagic province of the Chatham Rise, east of southern New Zealand. Age-related, depth-related, and bioprovincial faunal variations are documented in this chapter. One new species, Rectuvigerina tasmana, is named. The paleoecologic indications of several key groups, including the miliolids, uvigerinids, nuttallitids, and cibicidids, are combined with sedimentologic and stable isotopic tracers to interpret paleoceanographic changes in the Tasman Sea. Because the total stratigraphic ranges of many bathyal benthic foraminifers are not yet known, most endpoints in the Tasman Sea are considered ecologically controlled events. The disappearances of Uvigerina rippensis and Cibicidoidesparki and the first appearances of U. pigmaea, Sphaeroidina bulloides, and Rotaliatina sulcigera at the Eocene/Oligocene boundary can be considered evolutionary events, as also can the first appearance of Cibicides wuellerstorfi in Zone NN5. Species which are restricted to the lower bathyal zone except during discrete pulses, most of which are related to the development of glacial conditions, include Melonis pompilioides, M. sphaeroides, Pullenia quinqueloba, Nuttallides umbonifera, and U. hispido-costata. Middle bathyal indigenes include U. spinulosa, U. gemmaeformis, Ehrenbergina marwicki, R. sulcigera, and all rectuvigerinids except Rectuvigerina spinea. Although the miliolids first occurred at lower bathyal depths, they were more common in the middle bathyal zone. Although the Neogene hispido-costate uvigerinids first developed at lower bathyal depths and at higher middle latitude sites, in the later Neogene this group migrated to shallower depths and became predominant also in the middle bathyal zone. Despite the relatively similar sedimentologic settings at the six middle bathyal Tasman sites, there was extensive intrageneric and intraspecific geographic variation. Mililiolids, strongly ornamented brizalinids, bolivinitids, Bulimina aculeata, Osangularia culter, and strongly porous morphotypes were more common at higher latitudes. Osangularia bengalensis, striate brizalinids such as Brizalina subaenariensis, Gaudryina solida, osangularids in general, and finely porous morphotypes were more common in the subtropics. There was strong covariance between faunas at lower middle latitude, lower bathyal Site 591, and higher middle latitude, middle bathyal Site 593. The following oceanographic history of the Tasman Sea is proposed; using the stable isotopic record as evidence for glacials and examining the ecologic correlations between (1) miliolids and carbonate saturation, (2) nuttallitids and undersaturated, cooled, or "new" water masses, (3) uvigerinids with high organic carbon in the sediment and high rates of sediment accumulation, and (4) cibicidids and terrestrial organic carbon. The glacial located near the Eocene/Oligocene boundary is characterized by the penetration of cooler, more corrosive waters at intermediate depths in high southern latitudes. This may have caused overturn, upwelling pulses, in other Tasman areas. The development of Neogenelike conditions began in the late Oligocene (Zone NP24/NP25) with the evolution of several common Neogene species. A large number of Paleogene benthics disappeared gradually through the course of the early Miocene, which was not well preserved at any Tasman site. Corrosive conditions shallowed into the middle bathyal zone in several pulses during the early Miocene. The development of glacial conditions in the middle Miocene was accompanied by major changes throughout the Tasman Sea. Sediment accumulation rates increased and high-productivity faunas and corrosive conditions developed at all but the lowest-latitude Site 588. This increase in productivity and accumulation rate is attributed to the eutrophication of Antarctic water masses feeding Tasman current systems, as well as to invigorated circulation in general. It overlaps with the beginning of the Pacific High-productivity Episode (10-5 Ma). During the latest Miocene glacial episode, corrosive conditions developed at lower bathyal depths, while cooler water and lower nutrient levels shallowed to middle bathyal depths. Lower input of terrestrial organic carbon may be related to the lower nutrient levels of this time and to the termination of the Pacific High-productivity Episode. The moderate glacial episode during the mid-Pliocene (Zone NN15/NN16, ~3.2 Ma) corresponds to a decline in sediment accumulation rates and a reorganization of faunas unlike that of all other times. New genera proliferate and indices for cool, noncorrosive conditions and high organic carbon expand throughout the middle bathyal zone coeval with the sedimentation rate decreases. By the latest Pliocene (about 2.5 Ma), however, during another glacial episode, faunal patterns typical of this and later glacials develop throughout the Tasman Sea. Benthic foraminiferal patterns suggest increased input of terrestrial organic matter to Tasman Sea sediments during this episode and during later glacials.
Resumo:
Drilling at three DSDP drill sites on the western margin of the Pacific Ocean off the coast of Japan yielded thick sequences of hemipelagic muds and clays generally depleted of calcareous nannofossils. Operations at Sites 582 and 583 recovered dominantly Quaternary sediments. The Pliocene/Pleistocene boundary was reached near the bottom of Hole 582B. At both sites, preserved coccolith populations contained generally few to common nannoliths. The effects of reworking were evident throughout most sections at these two sites. Drilling at Site 584 in the Japan Trench recovered Holocene to Miocene sediments. Populations of nannofossils from this site were generally more depleted than those from the two Nankai Trough sites. Reworking within these sections appears to be much less severe than in samples from the more southern sites.
Resumo:
Leg 101 of the Ocean Drilling Program drilled 19 holes at 11 sites to investigate the geology of the Straits of Florida and the northern Bahamas. Drilling at Site 626 indicated that the Gulf Stream has had significant flow through the Straits of Florida for at least the last 24 million years. Winnowed, foraminiferal grainstones and packstones with sparse nannofossil assemblages and the reworking of older nannofossils suggest strong bottom-current activity throughout this interval. Drilling north of Little Bahama Bank and in Exuma Sound documents the growth of platform slopes during the late Cenozoic. Nannofossil biostratigraphy of the upper Cenozoic sediments from the Little Bahama Bank and Exuma Sound slope transects indicates relatively continuous deposition, with only short breaks in the periplatform ooze and/or calciturbidite accumulation during the late Pliocene. These unconformities may be linked to sea-level lowstands. Nannofossil assemblages are generally poorly preserved owing to accelerated diagenesis caused by high aragonite and high magnesium calcite contents of bank-derived material. High rates of influx of bank-derived materials appear to coincide with highstands of sea level. Periplatform sediments are largely limited to the upper Cenozoic at Little Bahama Bank. Pelagic and/or hemipelagic conditions existed during the Late Cretaceous and Paleogene. A relatively complete, continuous section of Oligocene is present in the Little Bahama Bank area, although the rest of the Paleogene is thin. Paleogene material is also present in Northeast Providence Channel, although its thickness is uncertain. A thick upper Campanian chalk sequence with abundant, moderately to well-preserved nannofossils occurs in the Little Bahama Bank area. Hemipelagic nannofossil marls and marly chalks at Little Bahama Bank contain an excellent nannofossil record, which indicates a continuous lowermost to middle Cenomanian sequence overlying the upper Albian drowned platform. These hemipelagic sediments are significantly younger than the organic-rich, middle Albian limestones in Northeast Providence Channel. The latter indicate that a deep-water channel was already well established by the middle Albian.
Resumo:
During Ocean Drilling Program Leg 149, five sites were drilled on the Iberia Abyssal Plain, west of the Iberian Peninsula. Five holes (Holes 897A, 897C, 898A, 899A, and 900A) yielded Pliocene-Pleistocene sediments, which consist mainly of turbidites. Among these, Holes 897C and 898A yielded significant Pliocene-Pleistocene sediments that provided a high-resolution nannofossil biostratigraphy essential for locating paleomagnetic polarity events and for interpreting the age and frequency of turbidite sedimentation in the Iberia Abyssal Plain. Pliocene-Pleistocene nannofossils recovered during Leg 149 are generally abundant and well to moderately preserved. Although reworking is evident in most samples, the Pliocene-Pleistocene nannofossils proved quite reliable for dating the sediments. Most Pleistocene zonal boundaries proposed by S. Gartner in 1977 and the Pliocene standard zonal boundaries proposed by E. Martini in 1971 were easily recognized. In addition, several other nannofossil events proposed by D. Rio et al. in 1990 and by T. Sato and T. Takayama in 1992 were recognized and proved valuable for improving the resolution of Pliocene-Pleistocene nannofossil biostratigraphy. The Pliocene-Pleistocene nannofossil biostratigraphic results of Holes 897C and 900A coincide rather well with the discerned paleomagnetic polarity events. As a result, the combination of nannofossil biostratigraphic and paleomagnetic studies provides important information for fulfilling the second objective of this leg: to determine the history of turbidite sedimentation in the Iberia Abyssal Plain. The general trend of sedimentation rates inferred by nannofossil biostratigraphy indicates that sedimentation rates increase from the continental margin to the deep sea along with increasing water depth.
Resumo:
Early Pliocene to middle late Miocene hemipelagic and distal turbidite sediments from Hole 1095B, near the Antarctic Peninsula, yield moderately abundant, moderately well preserved radiolarian faunas and other biosiliceous material (diatoms, silicoflagellates, and sponge spicules). Preservation characteristics, however, vary strongly even between closely related samples, and there are many intervals of poor preservation. In the 140- to 460-meters below seafloor interval studied, it was possible to identify the following standard Southern Ocean radiolarian zones: Upsilon, Tau, Amphymenium challengerae, Acrosphaera? labrata, Siphonosphaera vesuvius, and upper Acrosphaera australis (total age range ~4-10 Ma). Some normally common radiolarian groups, such as actinommids, are unusually rare in the studied material, and the relative ranges of several individual species, such as Acrosphaera labrata vs. A. australis, appear to be somewhat anomalous. These observations imply that the ranges of taxa in this section may be somewhat diachronous, due to either local ecologic factors and/or the highly variable preservation of the faunas. Thus, the ages of events reported are probably only approximate, although they are still useful for constraining the age of sediments in this section.
Resumo:
Microbial communities were analyzed at 17 sites visited during the expedition Tundra Northwest 1999 (TNW-99) by microscopic analyses (epifluorescence microscopy and image analyses). The data were used to describe the communities of bacteria, fungi and algae in detail by number, biovolume and biomass. Great variability was found, which could be related to organic matter content of soils and features of vegetation patterns. The amounts (numbers and abundance) of organisms and data on microbial biomass are discussed in relation to other polar environments of the Northern and Southern Hemispheres.
Resumo:
The intertidal and subtidal soft bottom macro- and meiofauna of a glacier fjord on Spitsbergen was studied after complete ice melt in June 2003. The abundances of the benthic fauna were within the range reported from estuaries and similar intertidal areas of boreal regions. The high proportion of juveniles in the eulittoral zone indicated larval recruitment from subtidal areas. The macrobenthic fauna can be divided into an intertidal and a subtidal community, both being numerically dominated by annelids. Deposit feeders were numerically predominant in intertidal sites, whereas suspension feeders were most abundant in the subtidal area. Among the meiofauna, only the benthic copepods were identified to species, revealing ecological adaptations typical for intertidal species elsewhere.