981 resultados para Above-ground biomass


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This data set contains measurements of plant height: vegetative height (heighest leaf) and regenerative height (heighest flower) in 2007 from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the Main Experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2007, plant height was recorded twice a year just before biomass harvest (during peak standing biomass in late May and in late August). For target plant individuals at 10 points separated by 1 m each along a transect in the central area in the plots, vegetative height (heighest leaf) and regenerative height (heighest flower) were measured as standing height (without stretching the plant). In 2007, also the plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details below) were sampled by measuring vegatation height five times, every 0.5m on a 3m transekt along the side of the management plots. Provided are the individual measurements and the mean over the measured plants.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This data set contains measurements of plant height: vegetative height (heighest leaf) and regenerative height (heighest flower) in 2008 from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the Main Experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2008, plant height was recorded twice a year just before biomass harvest (during peak standing biomass in late May and in late August). For target plant individuals at 10 points separated by 1 m each along a transect in the central area in the plots, vegetative height (heighest leaf) and regenerative height (heighest flower) were measured as standing height (without stretching the plant). In 2008, also the plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details below) were sampled by measuring vegatation height five times, every 1m on a 5m transekt along the side of the management plots. Provided are the individual measurements and the mean over the measured plants.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This data set contains measurements of plant height: vegetative height (heighest leaf) and regenerative height (heighest flower) in 2005 from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the Main Experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2005, plant height was recorded twice a year just before biomass harvest (during peak standing biomass in late May and in late August). For target plant individuals at 10 points separated by 1 m each along a transect in the central area in the plots, vegetative height (heighest leaf) and regenerative height (heighest flower) were measured as standing height (without stretching the plant). Provided are the individual measurements and the mean over the measured plants.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This data set contains measurements of plant height: vegetative height (heighest leaf) and regenerative height (heighest flower) in 2006 from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the Main Experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2006, plant height was recorded twice a year just before biomass harvest (during peak standing biomass in late May and in late August). For target plant individuals at 10 points separated by 1 m each along a transect in the central area in the plots, vegetative height (heighest leaf) and regenerative height (heighest flower) were measured as standing height (without stretching the plant). In 2006, also the plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details below) were sampled by measuring vegatation height five times, every 1m on a 5m transekt along the side of the management plots. Provided are the individual measurements and the mean over the measured plants.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Root and shoot attributes of 12 indigenous perennial accessions of the wild mungbean (Vigna radiata ssp. sublobata) were evaluated in early and late summer sowings in the field in SE Queensland. All but one of the accessions were obtained from the Townsville-Charters Towers region of NE Queensland. In both sowings, the accessions developed thickened tap and lateral roots, the taproot thickening extending to a depth of 0.20-0.30m below the soil surface, depending on accession. The thickened lateral roots emerged from the taproot within 0.10m of the soil surface, and extended laterally up to 1.10 m, remaining close to the soil surface. Differences among the accessions in gross root morphology and phenology were relatively small. There were differences among the accessions in the production of seed, tuberised root, and recovered total plant biomass. Depending on accession and sowing date, the tuberised roots accounted for up to 31% of recovered plant biomass and among accessions, the root biomass was positively correlated with total plant biomass. In contrast, seed biomass represented only a small proportion of recovered plant biomass, up to a maximum of 14%, depending on accession and sowing date. Among accessions, the proportion of seed biomass tended to be negatively correlated with that of tuber biomass. The perennial trait appears to be unique to Australian accessions of wild mungbean obtained from coastal-subcoastal, speargrass-dominant woodlands of NE Queensland. Although the ecological significance of the trait remains conjectural, field observation indicates that it facilitates rapid plant re-growth following early summer rainfall, especially where dry-season. re has removed previous-season above-ground growth.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2009, vegetation cover was estimated twice in May and August just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers. In 2009, in addition to the four community level cover estimates, cover of the moss layer was estimated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2010, vegetation cover was estimated twice in May and August just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2013, vegetation cover was estimated twice in May and August just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2008, vegetation cover was estimated twice in May and August just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers.