960 resultados para ATOMS LI
Resumo:
制备了化学稳定的Er^3+/Yb^3+共掺的磷酸盐玻璃,并在其中制作了用于光放大器和激光器的平面光波导.这种磷酸盐玻璃的失重速率为4.7×10^-5g·cm^-2·hr^-1,小于Kigre公司商业化的磷酸盐玻璃QX/Er的失重速率.采用Ag^+-Li^+交换技术制作了平面光波导并用m-线光谱在632.8nm测量了平面光波导的有效折射率.根据反WKB法得到折射率形貌,计算了离子交换参数如:离子交换深度、表面折射率,折射率改变和扩散系数等.
Resumo:
Spectral properties of Yb3+/Ni2+ codoped transparent silicate glass ceramics containing LiGa5O8 nanocrystals were investigated. The near-infrared emission intensity of Ni2+ was largely increased with Yb3+ codoping due to Yb3+-> Ni2+ energy transfer. The qualitative calculation of the energy transfer constant Cs-a and rate Ps-a showed that the Yb3+-> Ni2+ energy transfer was much greater than in the opposite direction. Yb3+/Ni2+ codoped glass ceramics with 0.75 mol % Yb2O3 exhibited a near-infrared emission with full width at half maximum of 290 nm and fluorescent lifetime of 920 mu s. The glass ceramics are promising for broadband optical amplification.
Resumo:
本文报道了太行花属(Taihangia Yu et Li)的种群分布、生物学特性和离体培养的初步结果。 太行花种群由于环境和生物等方面的原因仅在太行山区有狭小分布。来源于不同地区种群的太行花其形态特征具有丰富的表型,在引种条件下更为显著。而酯酶同工酶和过氧化物酶同工酶分析进一步证实了其遗传的稳定性和同源性。 实验表明,太行花在北纬39°58',最低温度-11℃的北京北京植物园,露地越冬正常。温度提高至40℃时生长发育受抑制而迟滞,以25℃最为适宜,增殖率最高。太行花对土壤的适应范围较广,在泥炭培养土上移殖的幼苗成活率达97.20%,主根须根发达,叶生长良好。不同强度光照处理12000Lux效果最好。 太行花生育期为230多天,生长积温为3763℃左右。物候期受环境条件和当年气候的影响,不同种群和个体之间有一定的差异。花的性别、花期和开花量等与纬度、海拔主要与温湿度相关。 太行花的茎尖、花芽、花梗、萼片、花瓣和叶子等外植体均能在MS附加不同种类和浓度植物激素的培养基中分化,其分化途径和分化效果因附加成分、外植体类别而异。在含有0.1mg/L IAA和0.5mg/L 6-BA的培养基中,不但能启动花芽正常生长、开花、形成合子胚,而且也能诱导花芽、花梗、茎尖产生花芽和营养芽。在芽的继代培养中,细胞分裂素能大量诱导芽的分化,最好的配比是0.5mg/L 6-BA、0.1mg/L ZJ;只含生长素时可以诱导生根或脱分化,其中生根最好的是0.5mg/L IAA;2.4-D单独使用时,能较好地使花芽、叶等脱分化,其最佳浓度为1.0mg/L。
Resumo:
Hafnium oxide (HfOx) is a high dielectric constant (k) oxide which has been identified as being suitable for use as the gate dielectric in thin film transistors (TFTs). Amorphous materials are preferred for a gate dielectric, but it has been an ongoing challenge to produce amorphous HfOx while maintaining a high dielectric constant. A technique called high target utilization sputtering (HiTUS) is demonstrated to be capable of depositing high-k amorphous HfOx thin films at room temperature. The plasma is generated in a remote chamber, allowing higher rate deposition of films with minimal ion damage. Compared to a conventional sputtering system, the HiTUS technique allows finer control of the thin film microstructure. Using a conventional reactive rf magnetron sputtering technique, monoclinic nanocrystalline HfOx thin films have been deposited at a rate of ∼1.6nmmin-1 at room temperature, with a resistivity of 1013Ωcm, a breakdown strength of 3.5MVcm-1 and a dielectric constant of ∼18.2. By comparison, using the HiTUS process, amorphous HfOx (x=2.1) thin films which appear to have a cubic-like short-range order have been deposited at a high deposition rate of ∼25nmmin-1 with a high resistivity of 1014Ωcm, a breakdown strength of 3MVcm-1 and a high dielectric constant of ∼30. Two key conditions must be satisfied in the HiTUS system for high-k HfOx to be produced. Firstly, the correct oxygen flow rate is required for a given sputtering rate from the metallic target. Secondly, there must be an absence of energetic oxygen ion bombardment to maintain an amorphous microstructure and a high flux of medium energy species emitted from the metallic sputtering target to induce a cubic-like short range order. This HfOx is very attractive as a dielectric material for large-area electronic applications on flexible substrates. A remote plasma sputtering process (high target utilization sputtering, HiTUS) has been used to deposit amorphous hafnium oxide with a very high dielectric constant (∼30). X-ray diffraction shows that this material has a microstructure in which the atoms have a cubic-like short-range order, whereas radio frequency (rf) magnetron sputtering produced a monoclinic polycrystalline microstructure. This is correlated to the difference in the energetics of remote plasma and rf magnetron sputtering processes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Graphene is a single layer of covalently bonded carbon atoms, which was discovered only 8 years ago and yet has already attracted intense research and commercial interest. Initial research focused on its remarkable electronic properties, such as the observation of massless Dirac fermions and the half-integer quantum Hall effect. Now graphene is finding application in touch-screen displays, as channels in high-frequency transistors and in graphene-based integrated circuits. The potential for using the unique properties of graphene in terahertz-frequency electronics is particularly exciting; however, initial experiments probing the terahertz-frequency response of graphene are only just emerging. Here we show that the photoconductivity of graphene at terahertz frequencies is dramatically altered by the adsorption of atmospheric gases, such as nitrogen and oxygen. Furthermore, we observe the signature of terahertz stimulated emission from gas-adsorbed graphene. Our findings highlight the importance of environmental conditions on the design and fabrication of high-speed, graphene-based devices.
Resumo:
Redescription of Balantidium polyvacuolum Li 1963, collected from the hindgut of Xenocypris davidi and Xenocypris argentea, from Niushan Lake Fishery (30A degrees 19' N, 114A degrees 31' E) in Wuhan City, Hubei Province, China in April and June 2007 is presented in this paper to complete Li's description at both light and scanning electronic microscopic levels. The unique body shape of B. polyvacuolum-highly arched dorsal side and flattened ventral surface-as well as its remarkable concave platelet present in the centroventral were well described and compared with other close Balantidium species. Besides, two types of vestibulum shape are observed in our present work, which may suggest the existence of two subspecies or genotype species of these balantidia.
Resumo:
The morphology of Gomphonema kaznakowi Mereschkowsky was investigated using light microscopy. This species has two morphologically distinct areas near the headpole; an unornamented and an ornamented area. The two areas are distinguished from each other by the combination of size and striae number. A new species, Gomphonema yangtzensis Li nov. sp. is identified based on an ornamented area near the headpole. G. kaznakowi is reported from the upper and middle part of the Yangtze River, and was also found in the upper section of the Yellow River. G. yangtzensis was found in the upper area of the Yellow River and the middle of the Yangtze River. Their limited distribution may be due to certain environmental conditions or a different dispersal rate. Both species are illustrated.
Resumo:
On the basis of the density functional theory (DFT) within local density approximations (LDA) approach, we calculate the band gaps for different size SnO2 quantum wire (QWs) and quantum dots (QDs). A model is proposed to passivate the surface atoms of SnO2 QWs and QDs. We find that the band gap increases between QWs and bulk evolve as Delta E-g(wire) = 1.74/d(1.20) as the effective diameter d decreases, while being Delta E-g(dot) = 2.84/d(1.26) for the QDs. Though the similar to d(1.2) scale is significantly different from similar to d(2) of the effective mass result, the ratio of band gap increases between SnO2 QWs and QDs is 0.609, very close to the effective mass prediction. We also confirm, although the LDS calculations underestimate the band gap, that they give the trend of band gap shift as much as that obtained by the hybrid functional (PBE0) with a rational mixing of 25% Fock exchange and 75% of the conventional Perdew-Burke-Ernzerhof (PBE) exchange functional for the SnO2 QWs and QDs. The relative deviation of the LDA calculated band gap difference Lambda E-g compared with the corresponding PBE0 results is only within 5%. Additionally, it is found the states of valence band maximum (VBM) and conduction band minimum (CBM) of SnO2 QWs or QDs have a mostly p- and s-like envelope function symmetry, respectively, from both LDA and PBE0 calculations.
Resumo:
The crystal structure, mechanical properties and electronic structure of ground state BeH2 are calculated employing the first-principles methods based on the density functional theory. Our calculated structural parameters at equilibrium volume are well consistent with experimental results. Elastic constants, which well obey the mechanical stability criteria, are firstly theoretically acquired. The bulk modulus B, Shear modulus G, Young's modulus E, and Poisson's ratio upsilon are deduced from the elastic constants. The bonding nature in BeH2 is fully interpreted by combining characteristics in band structure, density of states, and charge distribution. The ionicity in the Be-H bond is mainly featured by charge transfer from Be 2s to H 1s atomic orbitals while its covalency is dominated by the hybridization of H 1s and Be 2p states. The Bader analysis of BeH2 and MgH2 are performed to describe the ionic/covalent character quantitatively and we find that about 1.61 (1.6) electrons transfer from each Be (Mg) atom to H atoms.