490 resultados para ASTERISK-ALGEBRAS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lo scopo di questa tesi è studiare alcune proprietà di base delle algebre di Hopf, strutture algebriche emerse intorno agli anni ’50 dalla topologica algebrica e dalla teoria dei gruppi algebrici, e mostrare un collegamento tra esse e le algebre di Lie. Il primo capitolo è un’introduzione basilare al concetto di prodotto tensoriale di spazi vettoriali, che verrà utilizzato nel secondo capitolo per definire le strutture di algebra, co-algebra e bi-algebra. Il terzo capitolo introduce le definizioni e alcune proprietà di base delle algebre di Hopf e di Lie, con particolare attenzione al legame tra le prime e l’algebra universale inviluppante di un’algebra di Lie. Questo legame sarà approfondito nel quarto capitolo, dedicato allo studio di una particolare classe di algebre di Hopf, quelle graduate e connesse, che terminerà con il teorema di Cartier-Quillen-Milnor-Moore, un teorema strutturale che fornisce condizioni sufficienti affinché un’algebra di Hopf sia isomorfa all’algebra universale inviluppante dei suoi elementi primitivi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Mites (Acari) have traditionally been treated as monophyletic, albeit composed of two major lineages: Acariformes and Parasitiformes. Yet recent studies based on morphology, molecular data, or combinations thereof, have increasingly drawn their monophyly into question. Furthermore, the usually basal (molecular) position of one or both mite lineages among the chelicerates is in conflict to their morphology, and to the widely accepted view that mites are close relatives of Ricinulei. Results: The phylogenetic position of the acariform mites is examined through employing SSU, partial LSU sequences, and morphology from 91 chelicerate extant terminals (forty Acariformes). In a static homology framework, molecular sequences were aligned using their secondary structure as guide, whereby regions of ambiguous alignment were discarded, and pre-aligned sequences analyzed under parsimony and different mixed models in a Bayesian inference. Parsimony and Bayesian analyses led to trees largely congruent concerning infraordinal, well-supported branches, but with low support for inter-ordinal relationships. An exception is Solifugae + Acariformes (P. P = 100%, J. = 0.91). In a dynamic homology framework, two analyses were run: a standard POY analysis and an analysis constrained by secondary structure. Both analyses led to largely congruent trees; supporting a (Palpigradi (Solifugae Acariformes)) clade and Ricinulei as sister group of Tetrapulmonata with the topology (Ricinulei (Amblypygi (Uropygi Araneae))). Combined analysis with two different morphological data matrices were run in order to evaluate the impact of constraining the analysis on the recovered topology when employing secondary structure as a guide for homology establishment. The constrained combined analysis yielded two topologies similar to the exclusively molecular analysis for both morphological matrices, except for the recovery of Pedipalpi instead of the (Uropygi Araneae) clade. The standard (direct optimization) POY analysis, however, led to the recovery of trees differing in the absence of the otherwise well-supported group Solifugae + Acariformes. Conclusions: Previous studies combining ribosomal sequences and morphology often recovered topologies similar to purely morphological analyses of Chelicerata. The apparent stability of certain clades not recovered here, like Haplocnemata and Acari, is regarded as a byproduct of the way the molecular homology was previously established using the instrumentalist approach implemented in POY. Constraining the analysis by a priori homology assessment is defended here as a way of maintaining the severity of the test when adding new data to the analysis. Although the strength of the method advocated here is keeping phylogenetic information from regions usually discarded in an exclusively static homology framework; it still has the inconvenience of being uninformative on the effect of alignment ambiguity on resampling methods of clade support estimation. Finally, putative morphological apomorphies of Solifugae + Acariformes are the reduction of the proximal cheliceral podomere, medial abutting of the leg coxae, loss of sperm nuclear membrane, and presence of differentiated germinative and secretory regions in the testis delivering their products into a common lumen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We evaluate the mass of the B(s0) scalar meson and the coupling constant in the B(s0)BK vertex in the framework of QCD sum rules. We consider the B(s0) as a tetraquark state to evaluate its mass. We get m(Bs0) = (5.85 +/- 0.13) GeV, which is in agreement, considering the uncertainties, with predictions supposing it as a b (s) over bar state or a B (K) over bar bound state with J(P) = 0(+). To evaluate the g(Bs0BK) coupling, we use the three-point correlation functions of the vertex, considering B(s0) as a normal b (s) over bar state. The obtained coupling constant is: g(Bs0BK) = (16.3 +/- 3.2) GeV. This number is in agreement with light-cone QCD sum rules calculation. We have also compared the decay width of the B(s0) -> BK process considering the B(s0) to be a b (s) over bar state and a BK molecular state. The width obtained for the BK molecular state is twice as big as the width obtained for the b (s) over bar state. Therefore, we conclude that with the knowledge of the mass and the decay width of the B(s0) meson, one can discriminate between the different theoretical proposals for its structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The solvent effects on the low-lying absorption spectrum and on the (15)N chemical shielding of pyrimidine in water are calculated using the combined and sequential Monte Carlo simulation and quantum mechanical calculations. Special attention is devoted to the solute polarization. This is included by an iterative procedure previously developed where the solute is electrostatically equilibrated with the solvent. In addition, we verify the simple yet unexplored alternative of combining the polarizable continuum model (PCM) and the hybrid QM/MM method. We use PCM to obtain the average solute polarization and include this in the MM part of the sequential QM/MM methodology, PCM-MM/QM. These procedures are compared and further used in the discrete and the explicit solvent models. The use of the PCM polarization implemented in the MM part seems to generate a very good description of the average solute polarization leading to very good results for the n-pi* excitation energy and the (15)N nuclear chemical shield of pyrimidine in aqueous environment. The best results obtained here using the solute pyrimidine surrounded by 28 explicit water molecules embedded in the electrostatic field of the remaining 472 molecules give the statistically converged values for the low lying n-pi* absorption transition in water of 36 900 +/- 100 (PCM polarization) and 36 950 +/- 100 cm(-1) (iterative polarization), in excellent agreement among one another and with the experimental value observed with a band maximum at 36 900 cm(-1). For the nuclear shielding (15)N the corresponding gas-water chemical shift obtained using the solute pyrimidine surrounded by 9 explicit water molecules embedded in the electrostatic field of the remaining 491 molecules give the statistically converged values of 24.4 +/- 0.8 and 28.5 +/- 0.8 ppm, compared with the inferred experimental value of 19 +/- 2 ppm. Considering the simplicity of the PCM over the iterative polarization this is an important aspect and the computational savings point to the possibility of dealing with larger solute molecules. This PCM-MM/QM approach reconciles the simplicity of the PCM model with the reliability of the combined QM/MM approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We solve the operator ordering problem for the quantum continuous integrable su(1,1) Landau-Lifshitz model, and give a prescription to obtain the quantum trace identities, and the spectrum for the higher-order local charges. We also show that this method, based on operator regularization and renormalization, which guarantees quantum integrability, as well as the construction of self-adjoint extensions, can be used as an alternative to the discretization procedure, and unlike the latter, is based only on integrable representations. (C) 2010 American Institute of Physics. [doi:10.1063/1.3509374]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In one-component Abelian sandpile models, the toppling probabilities are independent quantities. This is not the case in multicomponent models. The condition of associativity of the underlying Abelian algebras imposes nonlinear relations among the toppling probabilities. These relations are derived for the case of two-component quadratic Abelian algebras. We show that Abelian sandpile models with two conservation laws have only trivial avalanches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We extend the Jacobson's Coordinatization theorem to Jordan superalgebras. Using it we classify Jordan bimodules over superalgebras of types Q(n) and JP(n), n >= 3. Then we use the Tits-Kantor-Koecher construction and representation theory of Lie superalgebras to treat the remaining case Q(2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Irreducible nonzero level modules with finite-dimensional weight spaces are discussed for nontwisted affine Lie superalgebras. A complete classification of such modules is obtained for superalgebras of type A(m, n)(boolean AND) and C(n)(boolean AND) using Mathieu's classification of cuspidal modules over simple Lie algebras. In other cases the classification problem is reduced to the classification of cuspidal modules over finite-dimensional cuspidal Lie superalgebras described by Dimitrov, Mathieu and Penkov. Based on these results a. complete classification of irreducible integrable (in the sense of Kac and Wakimoto) modules is obtained by showing that any such module is of highest weight, in which case the problem was solved by Kac and Wakimoto.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let A be a unital ring which is a product of possibly infinitely many indecomposable rings. We establish a criteria for the existence of a globalization for a given twisted partial action of a group on A. If the globalization exists, it is unique up to a certain equivalence relation and, moreover, the crossed product corresponding to the twisted partial action is Morita equivalent to that corresponding to its globalization. For arbitrary unital rings the globalization problem is reduced to an extendibility property of the multipliers involved in the twisted partial action.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study a class of lattice field theories in two dimensions that includes gauge theories. We show that in these theories it is possible to implement a broader notion of local symmetry, based on semisimple Hopf algebras. A character expansion is developed for the quasitopological field theories, and partition functions are calculated with this tool. Expected values of generalized Wilson loops are defined and studied with the character expansion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The minimal irreducible representations of U-q[gl(m|n)], i.e. those irreducible representations that are also irreducible under U-q[osp(m|n)] are investigated and shown to be affinizable to give irreducible representations of the twisted quantum affine superalgebra U-q[gl(m|n)((2))]. The U-q[osp(m|n)] invariant R-matrices corresponding to the tensor product of any two minimal representations are constructed, thus extending our twisted tensor product graph method to the supersymmetric case. These give new solutions to the spectral-dependent graded Yang-Baxter equation arising from U-q[gl(m|n)((2))], which exhibit novel features not previously seen in the untwisted or non-super cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gaudin models based on the face-type elliptic quantum groups and the XYZ Gaudin models are studied. The Gaudin model Hamiltonians are constructed and are diagonalized by using the algebraic Bethe ansatz method. The corresponding face-type Knizhnik–Zamolodchikov equations and their solutions are given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we investigate several important aspects of the structure theory of the recently introduced quasi-Hopf superalgebras (QHSAs), which play a fundamental role in knot theory and integrable systems. In particular we introduce the opposite structure and prove in detail (for the graded case) Drinfeld's result that the coproduct Delta ' =_ (S circle times S) (.) T (.) Delta (.) S-1 induced on a QHSA is obtained from the coproduct Delta by twisting. The corresponding "Drinfeld twist" F-D is explicitly constructed, as well as its inverse, and we investigate the complete QHSA associated with Delta '. We give a universal proof that the coassociator Phi ' = (S circle times S circle times S) Phi (321) and canonical elements alpha ' = S(beta), beta ' = S(alpha) correspond to twisting, the original coassociator Phi = Phi (123) and canonical elements alpha, beta with the Drinfeld twist F-D. Moreover in the quasi-tri angular case, it is shown algebraically that the R-matrix R ' = (S circle times S)R corresponds to twisting the original R-matrix R with F-D. This has important consequences in knot theory, which will be investigated elsewhere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this review we demonstrate how the algebraic Bethe ansatz is used for the calculation of the-energy spectra and form factors (operator matrix elements in the basis of Hamiltonian eigenstates) in exactly solvable quantum systems. As examples we apply the theory to several models of current interest in the study of Bose-Einstein condensates, which have been successfully created using ultracold dilute atomic gases. The first model we introduce describes Josephson tunnelling between two coupled Bose-Einstein condensates. It can be used not only for the study of tunnelling between condensates of atomic gases, but for solid state Josephson junctions and coupled Cooper pair boxes. The theory is also applicable to models of atomic-molecular Bose-Einstein condensates, with two examples given and analysed. Additionally, these same two models are relevant to studies in quantum optics; Finally, we discuss the model of Bardeen, Cooper and Schrieffer in this framework, which is appropriate for systems of ultracold fermionic atomic gases, as well as being applicable for the description of superconducting correlations in metallic grains with nanoscale dimensions.; In applying all the above models to. physical situations, the need for an exact analysis of small-scale systems is established due to large quantum fluctuations which render mean-field approaches inaccurate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Classical mechanics is formulated in complex Hilbert space with the introduction of a commutative product of operators, an antisymmetric bracket and a quasidensity operator that is not positive definite. These are analogues of the star product, the Moyal bracket, and the Wigner function in the phase space formulation of quantum mechanics. Quantum mechanics is then viewed as a limiting form of classical mechanics, as Planck's constant approaches zero, rather than the other way around. The forms of semiquantum approximations to classical mechanics, analogous to semiclassical approximations to quantum mechanics, are indicated.