923 resultados para ANIMAL MODEL


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chronic obstructive pulmonary disease (COPD) is characterized by progressive airway obstruction resultant from an augmented inflammatory response of the respiratory tract to noxious particles and gases. Previous reports present a number of different hypotheses about the etiology and pathophysiology of COPD. The generating mechanisms of the disease are subject of much speculation, and a series of questions and controversies among experts still remain. In this context, several experimental models have been proposed in order to broaden the knowledge on the pathophysiological characteristics of the disease, as well as the search for new therapeutic approaches for acute or chronically injured lung tissue. This review aims to present the main experimental models of COPD, more specifically emphysema, as well as to describe the main characteristics, advantages, disadvantages, possibilities of application, and potential contribution of each of these models for the knowledge on the pathophysiological aspects and to test new treatment options for obstructive lung diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims: The objective of this study is to create an experimental model of intestinal endometriosis in pigs, which might allow better understanding of deep infiltrating endometriosis and development of new treatment techniques. As secondary objective, we intend to create endometrial implants accessible by transrectal ultrasonography (TRUS). Study Design: Surgical experimental study in swine. Place and Duration of Study: This study was performed at the Instituto de Ensino e Pesquisa do Hospital Sírio-Libanês, São Paulo, Brazil, between January 2012 and December 2012. Methodology: Two sexually mature female minipigBR pigs underwent two laparotomies (each animal). The first laparotomy was performed to implant two fragments of autologous endometrium in the rectal wall. The second one was performed thirty days later to visualize, measure and obtain tissue of the site of the implants for histopathology study. A TRUS study was performed prior to the second surgery. The Institution’s Animal Utilization Study Committee approved the study. Results: In the first laparotomy a 5-cm segment of right uterine horn was resected. The endometrium was separated from the myometrium through sub-endometrial saline injection. Two endometrial fragments (1.0 x 2.0 cm) were dissected and sutured in the intra peritoneal anterior rectal wall of the animals. Thirty days later, all implants were identified during preoperative TRUS. “En-bloc” resection of the intestinal segment with the implants was performed during the second surgery. The autologous implants of endometrium invaded the muscular layer in one of the two animals. Conclusion: We demonstrated that the creation of an animal model of deep infiltrating endometriosis with intestinal involvement is feasible through a simple surgical technique. We believe that this model can be applied in experimental and clinical studies but further studies are necessary to refine the technique.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background and Purpose: Becoming proficient in laparoscopic surgery is dependent on the acquisition of specialized skills that can only be obtained from specific training. This training could be achieved in various ways using inanimate models, animal models, or live patient surgery-each with its own pros and cons. Currently, there are substantial data that support the benefits of animal model training in the initial learning of laparoscopy. Nevertheless, whether these benefits extent themselves to moderately experienced surgeons is uncertain. The purpose of this study was to determine if training using a porcine model results in a quantifiable gain in laparoscopic skills for moderately experienced laparoscopic surgeons. Materials and Methods: Six urologists with some laparoscopic experience were asked to perform a radical nephrectomy weekly for 10 weeks in a porcine model. The procedures were recorded, and surgical performance was assessed by two experienced laparoscopic surgeons using a previously published surgical performance assessment tool. The obtained data were then submitted to statistical analysis. Results: With training, blood loss was reduced approximately 45% when comparing the averages of the first and last surgical procedures (P = 0.006). Depth perception showed an improvement close to 35% (P = 0.041), and dexterity showed an improvement close to 25% (P = 0.011). Total operative time showed trends of improvement, although it was not significant (P = 0.158). Autonomy, efficiency, and tissue handling were the only aspects that did not show any noteworthy change (P = 0.202, P = 0.677, and P = 0.456, respectively). Conclusions: These findings suggest that there are quantifiable gains in laparoscopic skills obtained from training in an animal model. Our results suggest that these benefits also extend to more advanced stages of the learning curve, but it is unclear how far along the learning curve training with animal models provides a clear benefit for the performance of laparoscopic procedures. Future studies are necessary to confirm these findings and better understand the impact of this learning tool on surgical practice.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dengue fever is a noncontagious infectious disease caused by dengue virus (DENV). DENV belongs to the family Flaviviridae, genus Flavivirus, and is classified into four antigenically distinct serotypes: DENV-1, DENV-2, DENV-3, and DENV-4. The number of nations and people affected has increased steadily and today is considered the most widely spread arbovirus (arthropod-borne viral disease) in the world. The absence of an appropriate animal model for studying the disease has hindered the understanding of dengue pathogenesis. In our study, we have found that immunocompetent C57BL/6 mice infected intraperitoneally with DENV-1 presented some signs of dengue disease such as thrombocytopenia, spleen hemorrhage, liver damage, and increase in production of IFN gamma and TNF alpha cytokines. Moreover, the animals became viremic and the virus was detected in several organs by real-time RT-PCR. Thus, this animal model could be used to study mechanism of dengue virus infection, to test antiviral drugs, as well as to evaluate candidate vaccines.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction: Many experimental models using lung lavage have been developed for the study of acute respiratory distress syndrome (ARDS). The original technique has been modified by many authors, resulting in difficulties with reproducibility. There is insufficient detail on the lung injury models used, including hemodynamic stability during animal preparation and drawbacks encountered such as mortality. The authors studied the effects of the pulmonary recruitment and the use of fixed tidal volume (Vt) or fixed inspiratory pressure in the experimental ARDS model installation. Methods: Adult rabbits were submitted to repeated lung lavages with 30 ml/kg warm saline until the ARDS definition (PaO2/FiO(2) <= 100) was reached. The animals were divided into three groups, according to the technique used for mechanical ventilation: 1) fixed Vt of 10 ml/kg; 2) fixed inspiratory pressure (IP) with a tidal volume of 10 ml/kg prior to the first lung lavage; and 3) fixed Vt of 10 ml/kg with pulmonary recruitment before the first lavage. Results: The use of alveolar recruitment maneuvers, and the use of a fixed Vt or IP between the lung lavages did not change the number of lung lavages necessary to obtain the experimental model of ARDS or the hemodynamic stability of the animals during the procedure. A trend was observed toward an increased mortality rate with the recruitment maneuver and with the use of a fixed IP. Discussion: There were no differences between the three study groups, with no disadvantage in method of lung recruitment, either fixed tidal volume or fixed inspiratory pressure, regarding the number of lung lavages necessary to obtain the ARDS animal model. Furthermore, the three different procedures resulted in good hemodynamic stability of the animals, and low mortality rate. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study is to evaluate the oral colonization by Candida albicans in experimental murine immunosuppressed DBA/2 and treatment with probiotic bacteria. To achieve these objectives, 152 DBA/2-immunosuppressed mice were orally inoculated with a suspension of C. albicans containing 10(8) viable yeast cells, the animals were treated with nystatin or with the probiotics (Lactobacillus acidophilus and Lactobacillus rhamnosus). Evaluations were performed by Candida count from oral mucosa swabbing. The oral mucosa colonization by C. albicans started at day 1 after inoculation, remained maximal from day 3 until day 7, and then decreased significantly. Probiotics reduced the C. albicans colonization significantly on the oral mucosa in comparison with the untreated animal group. In the group treated with L. rhamnosus, the reduction in yeast colonization was significantly higher compared with that of the group receiving nystatin. Immunosuppressed animal model DBA/2 is a relevant model for experimental Candida oral colonization, and the treatment with probiotics in this model may be an effective alternative to prevent it. Oral Diseases (2012) 18, 260-264

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract Background The importance of the lung parenchyma in the pathophysiology of asthma has previously been demonstrated. Considering that nitric oxide synthases (NOS) and arginases compete for the same substrate, it is worthwhile to elucidate the effects of complex NOS-arginase dysfunction in the pathophysiology of asthma, particularly, related to distal lung tissue. We evaluated the effects of arginase and iNOS inhibition on distal lung mechanics and oxidative stress pathway activation in a model of chronic pulmonary allergic inflammation in guinea pigs. Methods Guinea pigs were exposed to repeated ovalbumin inhalations (twice a week for 4 weeks). The animals received 1400 W (an iNOS-specific inhibitor) for 4 days beginning at the last inhalation. Afterwards, the animals were anesthetized and exsanguinated; then, a slice of the distal lung was evaluated by oscillatory mechanics, and an arginase inhibitor (nor-NOHA) or vehicle was infused in a Krebs solution bath. Tissue resistance (Rt) and elastance (Et) were assessed before and after ovalbumin challenge (0.1%), and lung strips were submitted to histopathological studies. Results Ovalbumin-exposed animals presented an increase in the maximal Rt and Et responses after antigen challenge (p<0.001), in the number of iNOS positive cells (p<0.001) and in the expression of arginase 2, 8-isoprostane and NF-kB (p<0.001) in distal lung tissue. The 1400 W administration reduced all these responses (p<0.001) in alveolar septa. Ovalbumin-exposed animals that received nor-NOHA had a reduction of Rt, Et after antigen challenge, iNOS positive cells and 8-isoprostane and NF-kB (p<0.001) in lung tissue. The activity of arginase 2 was reduced only in the groups treated with nor-NOHA (p <0.05). There was a reduction of 8-isoprostane expression in OVA-NOR-W compared to OVA-NOR (p<0.001). Conclusions In this experimental model, increased arginase content and iNOS-positive cells were associated with the constriction of distal lung parenchyma. This functional alteration may be due to a high expression of 8-isoprostane, which had a procontractile effect. The mechanism involved in this response is likely related to the modulation of NF-kB expression, which contributed to the activation of the arginase and iNOS pathways. The association of both inhibitors potentiated the reduction of 8-isoprostane expression in this animal model.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: The repair of large bone defects is a major orthopedic challenge because autologous bone grafts are not available in large amounts and because harvesting is often associated with donor-site morbidity. Considering that bone marrow stromal cells (BMSC) are responsible for the maintenance of bone turnover throughout life, we investigated bone repair at a site of a critically sized segmental defect in sheep tibia treated with BMSCs loaded onto allografts. The defect was created in the mid-portion of the tibial diaphysis of eight adult sheep, and the sheep were treated with ex-vivo expanded autologous BMSCs isolated from marrow aspirates and loaded onto cortical allografts (n = 4). The treated sheep were compared with control sheep that had been treated with cell-free allografts (n = 4) obtained from donors of the same breed as the receptor sheep. Results: The healing response was monitored by radiographs monthly and by computed tomography and histology at six, ten, fourteen, and eighteen weeks after surgery. For the cell-loaded allografts, union was established more rapidly at the interface between the host bone and the allograft, and the healing process was more conspicuous. Remodeling of the allograft was complete at 18 weeks in the cell-treated animals. Histologically, the marrow cavity was reestablished, with intertrabecular spaces being filled with adipose marrow and with evidence of focal hematopoiesis. Conclusions: Allografts cellularized with AOCs (allografts of osteoprogenitor cells) can generate great clinical outcomes to noncellularized allografts to consolidate, reshape, structurally and morphologically reconstruct bone and bone marrow in a relatively short period of time. These features make this strategy very attractive for clinical use in orthopedic bioengineering

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Therapeutic vaccination for chronic hepatitis B in the Trimera mouse modelrnRaja Vuyyuru and Wulf O. BöcherrnHepatitis B is a liver disease caused by Hepatitis B virus (HBV). It ranges in severity from a mild illness, lasting a few weeks (acute), to a serious long-term (chronic) illness that can lead either to liver disease or liver cancer. Acute infection is self limiting in most adults, resulting in clearance of virus from blood and liver and the development of lasting immunity. However 5% of acutely infected patients do not resolve primary HBV infection, leading to chronic infection with persistent viral replication in the liver. The strength of the initial antiviral immune response elicited to Hepatitis B determines the subsequent clinical outcome. A strong and broad T cell response leads to spontaneous resolution. Conversely, a weak T cell response favours viral persistence and establishment of chronic disease. While treatments using interferon-alpha or nucleos(t)ide analogues can reduce disease progression, they rarely lead to complete recovery. The lack of a suitable small animal model hampered efforts to understand the mechanisms responsible for immune failure in these chronic patients.rnIn current study we used Trimera mice to study the efficacy of potential vaccine candidates using HBV loaded dendritic cells in HBV chronic infection in vivo. The Trimera mouse model is based on Balb/c mice implanted with SCID mouse bone marrow and human peripheral blood mononuclear cells (PBMC) from HBV patients, and thus contains the immune system of the donor including their HBV associated T cell defect.rnIn our present study, strong HBV specific CD4+ and CD8+ T cell responses were enhanced by therapeutic vaccination in chronic HBV patients. These T cell responses occurred independently of either the course of the disease or the strength of their underlying HBV specific T cell failure. These findings indicate that the Trimera mouse model represents a novel experimental tool for evaluating potential anti-HBV immunotherapeutic agents. This in vivo data indicated that both the HBV specific CD4+ cell and CD8+ responses were elicited in the periphery. These HBV specific T cells proliferated and secreted cytokines upon restimulation in Trimera mice. The observation that these HBV specific T cells are not detectable directly ex vivo indicates that they must be immune tolerant or present at a very low frequency in situ. HBV specific T cell responses were suppressed in Trimera mice under viremic conditions, suggesting that viral factors might be directly involved in tolerizing or silencing antiviral T cell responses. Thus, combination of an effective vaccine with antiviral treatment to reduce viremia might be a more effective therapeutic strategy for the future. Such approaches should be tested in Trimera mice generated in HBV or HBs expressing transgenic mice before conducting clinical trials.rn

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The physico-chemical characterization, structure-pharmacokinetic and metabolism studies of new semi synthetic analogues of natural bile acids (BAs) drug candidates have been performed. Recent studies discovered a role of BAs as agonists of FXR and TGR5 receptor, thus opening new therapeutic target for the treatment of liver diseases or metabolic disorders. Up to twenty new semisynthetic analogues have been synthesized and studied in order to find promising novel drugs candidates. In order to define the BAs structure-activity relationship, their main physico-chemical properties (solubility, detergency, lipophilicity and affinity with serum albumin) have been measured with validated analytical methodologies. Their metabolism and biodistribution has been studied in “bile fistula rat”, model where each BA is acutely administered through duodenal and femoral infusion and bile collected at different time interval allowing to define the relationship between structure and intestinal absorption and hepatic uptake ,metabolism and systemic spill-over. One of the studied analogues, 6α-ethyl-3α7α-dihydroxy-5β-cholanic acid, analogue of CDCA (INT 747, Obeticholic Acid (OCA)), recently under approval for the treatment of cholestatic liver diseases, requires additional studies to ensure its safety and lack of toxicity when administered to patients with a strong liver impairment. For this purpose, CCl4 inhalation to rat causing hepatic decompensation (cirrhosis) animal model has been developed and used to define the difference of OCA biodistribution in respect to control animals trying to define whether peripheral tissues might be also exposed as a result of toxic plasma levels of OCA, evaluating also the endogenous BAs biodistribution. An accurate and sensitive HPLC-ES-MS/MS method is developed to identify and quantify all BAs in biological matrices (bile, plasma, urine, liver, kidney, intestinal content and tissue) for which a sample pretreatment have been optimized.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Die Ursache der neurodegenerativen Erkrankung Spinozerebelläre Ataxie Typ 2 (SCA2) ist eine expandierte Polyglutamin-Domäne im humanen ATXN2-Gen von normalerweise 22 auf über 31 CAGs. Von der Degeneration sind vorwiegend die zerebellären Purkinje Neuronen betroffen, in denen zunehmend zytoplasmatische Aggregate sichtbar werden. Auch wenn die genaue Funktion von ATXN2 und die zugrunde liegenden molekularen Mechanismen noch immer ungeklärt sind, werden ein toxischer Funktionsgewinn sowie der Verlust der normalen Proteinfunktion als mögliche Ursachen diskutiert.rnUm ein wirklichkeitsgetreues Tiermodell für die SCA2 zu haben, wurde eine knock-in Maus generiert, deren einzelnes CAG im Atxn2-Gen durch 42 CAGs ersetzt wurde. Dieses Mausmodell ist durch eine stabile Vererbung der Expansion charakterisiert. Weiterhin zeigt sie ein verringertes Körpergewicht sowie eine spät beginnende motorische Inkoordination, was dem Krankheitsbild von SCA2 entspricht. rnIm Weiteren konnte gezeigt werden, dass, obwohl die Atxn2 mRNA-Spiegel in Großhirn und Kleinhirn erhöht waren, die Menge an löslichem ATXN2 im Laufe der Zeit abnahm und dies mit einem Auftreten an unlöslichem ATXN2 korrelierte. Dieser im Kleinhirn progressive Prozess resultierte schließlich in zytoplasmatischen Aggregaten innerhalb der Purkinje Neuronen alter Mäuse. Der Verlust an löslichem ATXN2 könnte Effekte erklären, die auf einen partiellen Funktionsverlust von ATXN2 zurückzuführen sind, wobei die Aggregatbildung einen toxischen Funktionsgewinn wiederspiegeln könnte. Neben ATXN2 wurde auch sein Interaktor PABPC1 zunehmend unlöslich. Während dies im Großhirn eine Erhöhung der PABPC1 mRNA- und löslichen Proteinspiegel zur Folge hatte, konnte keine kompensatorische Veränderung seiner mRNA und zudem eine Verminderung an löslichem PABPC1 im Kleinhirn beobachtet werden. Auch PABPC1 wurde in Aggregate sequestriert. Diese Unterschiede zwischen Großhirn und Kleinhirn könnten zu der spezifischen Vulnerabilität des Kleinhirns beitragen.rnUm die Folgen auf mRNA-Prozessierung zu untersuchen, wurde ein Transkriptomprofil im mittleren sowie fortgeschrittenen Alter der Mäuse erstellt. Hierbei war eine erhöhte Expression von Fbxw8 im Kleinhirn alter Mäuse auffällig. Als Komponente eines Ubiquitin-E3-Ligase-Komplexes, hilft FBXW8 in der Degradierung von Zielproteinen und könnte somit die Toxizität des expandieren ATXN2 verringern. rnZur näheren Beschreibung der physiologischen Funktion von ATXN2, konnte in ATXN2-knock-out Mäusen gezeigt werden, dass das Fehlen von ATXN2 zu einer reduzierten globalen Proteinsyntheserate führte und somit eine Rolle als Translationsaktivator möglich erscheint. Kompensatorisch wurde eine erhöhte S6-Phosphorylierung gemessen.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Canavan disease (CD) is a rare leukodystrophy caused by loss-of-function mutations in the gene encoding aspartoacylase (ASPA), an oligodendrocyte-enriched enzyme. It is characterised by the accumulation of the ASPA substrate N-acetylaspartate (NAA) in brain, blood and urine, leading to a spongiform vacuolisation of the brain, severe motoric and cognitive impairments and premature death. To date, no therapy is available due to the lack of a gene-transfer system allowing transgene expression in oligodendrocytes (OLs) and the restoration of the missing enzyme. Hence, the aim of this study was to establish a novel gene-transfer system and its preclinical evaluation in a CD animal model.rnIn the first part of this thesis, a novel ASPA mouse mutant was generated. A βgeo cassette (including the genes encoding β-galactosidase and neomycin) flanked by frt sites was inserted into intron 1 of the intact aspa gene. Additionally, exon 2 was flanked by loxP sites for optional conditional deletion of the targeted locus. The resulting ASPA-deficient aspalacZ/lacZ-mouse was found to be an accurate model of CD and an important tool to identify novel aspects of its complex pathology. Homozygous mutants showed a CD-like histopathology, neurological impairment, behavioural deficits as well as a reduced body weight. Additionally, MRI data revealed changes in brain metabolite composition. rnRecombinant adeno-associated viral (rAAV) vectors have become a versatile tool for gene transfer to the central nervous system because they are efficient, non-toxic and replication-deficient. Based on the natural neurotropism of AAV vectors, AAV-based gene delivery has entered the clinics for the treatment of neurodegenerative diseases. However, the lack of AAV vectors with oligodendroglial tropism has precluded gene therapy for leukodystrophies. In the second part of this work, it was shown that the transduction profile of established AAV serotypes can be targeted towards OLs in a transcriptional approach, using the oligodendrocyte-specific myelin basic protein (MBP) promoter to drive transgene expression in OLs.rnIn the last part of this work, the therapeutic efficacy of AAV-mediated aspa gene transfer to OLs of juvenile aspalacZ/lacZ mice was evaluated. AAV-aspa injections into multiple sites of the brain parenchyma resulted in transduction of OLs in the grey and white matter throughout the brain. Histological abnormalities in the brain of ASPA-deficient mice were ameliorated and accompanied by a reduction of NAA levels. Furthermore, the treatment resulted in normalisation of body weight, motor function and nest-building behaviour. These data provide a proof-of-concept for a successful gene therapy of Canavan disease. This might pave the way towards translation into clinical application and serve as the basis for the genetic treatment of other leukodystrophies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mechanical thrombectomy in ischemic stroke is of increasing interest as it is a promising strategy for fast and efficient recanalization. Several thrombectomy devices have been introduced to the armentarium of mechanical thrombectomy. Currently, new devices are under development and are continuously added to the neurointerventional tool box. Each device advocated so far has a different design and mechanical properties in terms of thrombus-device interaction. Therefore, a systematic evaluation under standardized conditions in vivo of these new devices is needed. The purpose of this study was to evaluate the efficiency, thrombus-device interaction, and potential complications of the novel Phenox CRC for distal mechanical thrombectomy in vivo. The device was evaluated in an established animal model in the swine. Recanalization rate, thromboembolic events, vasospasm, and complications were assessed. Radiopaque thrombi (2 cm length) were used for the visualization of thrombus-device interaction during retrieval. The Phenox CRC (4 mm diameter) was assessed in 15 vessel occlusions. For every occlusion a maximum of 3 retrieval attempts were performed. Complete recanalization (TICI 3/TIMI 3) was achieved in 86.7% of vessel occlusions. In 66.7% (10/15), the first retrieval attempt was successful, and in 20% (3/15), the second attempt led to complete recanalization of the parent artery. In 2 cases (13.3%) thrombus retrieval was not successful (TICI 0/TIMI 0). In 1 case (6.7%) a minor embolic event occurred in a small side branch. No distal thromboembolic event was observed during the study. Thrombus-device interaction illustrated the entrapment of the thrombus by the microfilaments and the proximal cage of the device. No significant thrombus compression was observed. No vessel perforation, dissection, or fracture of the device occurred. In this small animal study, the Phenox CRC was a safe and effective device for mechanical thrombectomy. The unique design with a combination of microfilaments and proximal cage reduces thrombus compression with a consequently high recanalization and low complication rate.