968 resultados para ANGIOTENSIN-II RECEPTORS
Resumo:
The present experiments were conducted to investigate the role of the alpha (1A)-, alpha (1B), beta (1),- and beta (2)-adrenoceptors of the lateral hypothalamus (LH) on the water and salt intake responses elicited by subfornical organ (SFO) injection of angiotensin II (ANG II) in rats. 5-methylurapidil (an alpha (1A)-adrenergic antagonist), cyclazosin (an alpha (1B)-adrenergic antagonist) and ICI-118,551 (a beta (2)-adrenergic antagonist) injected into the LH produced a dose-dependent reduction, whereas efaroxan (an alpha (2)-antagonist) increased the water intake induced by administration of ANG II into the SFO. These data show that injection of 5-methylurapidil into the LH prior to ANG II into the SFO increased the water and sodium intake induced by the injection of ANG II. The present data also show that atenolol (a beta (1)-adrenergic antagonist), ICI-118,551, cyclazosin, or efaroxan injected into the LH reduced in a dose-dependent manner the water and sodium intake to angiotensinergic activation of SFO. Thus, the alpha (1)- and beta -adrenoceptors of the LH are possibly involved with central mechanisms dependent on ANG II and SFO that control water and sodium intake. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
N-Terminally and internally labeled analogues of the hormones angiotensin (AII, DRVYIHPF) and bradykinin (BK, RPPGFSPFR) were synthesized containing the paramagnetic amino acid 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4- carboxylic acid (TOAC). TOAC replaced Asp 1 (TOAC 1-AII) and Val 3 (TOAC 3-AII) in AII and was inserted prior to Arg 1 (TOAC 0-BK) and replacing Pro 3 (TOAC 3-BK) in BK. The peptide conformational properties were examined as a function of trifluoroethanol (TFE) content and pH. Electron paramagnetic resonance spectra were sensitive to both variables and showed that internally labeled analogues yielded rotational correlation times (TC) considerably larger than N-terminally labeled ones, evincing the greater freedom of motion of the N-terminus. In TFE, τ C increased due to viscosity effects. Calculation of τ Cpeptide/τ CTOAC ratios indicated that the peptides acquired more folded conformations. Circular dichroism spectra showed that, except for TOAC 1-AII in TFE, the N-terminally labeled analogues displayed a conformational behavior similar to that of the parent peptides. In contrast, under all conditions, the TOAC 3 derivatives acquired more restricted conformations. Fluorescence spectra of All and its derivatives were especially sensitive to the ionization of Tyr 4. Fluorescence quenching by the nitroxide moiety was much more pronounced for TOAC 3-AII The conformational behavior of the TOAC derivatives bears excellent correlation with their biological activity, since, while the N-terminally labeled peptides were partially active, their internally labeled counterparts were inactive [Nakaie, C. R., et al., Peptides 2002, 23, 65-70]. The data demonstrate that insertion of TOAC in the middle of the peptide chain induces conformational restrictions that lead to loss of backbone flexibility, not allowing the peptides to acquire their receptor-bound conformation. © 2004 Wiley Periodicals, Inc.
Resumo:
Septic shock or sepsis is reported to be one of the major causes of death when followed by systemic infectious trauma in humans and other mammals. Its development leads to a large drop in blood pressure and a reduction in vascular responsiveness to physiological vasoconstrictors which, if not contained, can lead to death. It is proposed that this vascular response is due to the action of bacterial cell wall products released into the bloodstream by the vascular endothelium and is considered a normal response of the body's defenses against infection. A reduction in vascular reactivity to epinephrine and norepinephrine is observed under these conditions. In the present study in rats, the aim was to assess whether those effects of hypotension and hyporeactivity are also related to another endogenous vasoconstrictor, angiotensin II (AII). We evaluated the variation in the power of this vasoconstrictor over the mean arterial pressure in anesthetized rats, before and after the establishment of hypotension by Escherichia coli endotoxin (Etx). Our results show that in this model of septic shock, there is a reduction in vascular reactivity to AII and this reduction can be reversed by the inhibitor of nitric oxide synthase, Nω-Nitro-L- Arginine (NωNLA). Our results also suggest that other endogenous factors (not yet fully known) are involved in the protection of rats against septic shock, in addition to the L-arginine NO pathway.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Training in rats adapts the portal vein to respond vigorously to sympathetic stimuli even when the animal is re-exposed to exercise. Moreover, changes in the exercise-induced effects of angiotensin II, a potent venoconstrictor agonist, in venous beds remain to be investigated. Therefore, the present study aimed to assess the effects of angiotensin II in the portal vein and vena cava from sedentary and trained rats at rest or submitted to an exercise session immediately before organ bath experiments. We found that training or exposure of sedentary animals to a single bout of running exercise does not significantly change the responses of the rat portal vein to angiotensin II. However, the exposure of trained animals to a single bout of running exercise enhanced the response of the rat portal vein to angiotensin II. This enhancement appeared to be territory-specific because it was not observed in the vena cava. Moreover, it was not observed inendothelium-disrupted preparations and in preparations treated with Nω-nitro-l-arginine methyl esterhydrochloride, indomethacin, BQ-123 or BQ-788. These data indicate that training causes adaptations in the rat portal vein that respond vigorously to angiotensin II even upon re-exposure to exercise. This increased response to angiotensin II requires an enhancement of the vasocontractile influence of endothelin beyond the influence of nitric oxide and vasodilator prostanoids.
Resumo:
To assess the importance of the leucine residues in positions 262 and 265 of the angiotensin AT, receptor for signaling pathways and receptor expression and regulation, we compared the properties of CHO cells transfected with the wild type or the L262D or L265D receptor point mutants. It was found that the two mutants significantly increased the basal intracellular cyclic AMP (cAMP) formation in an agonist-independent mode. The morphology transformation of CHO cells was correlated with the increased cAMP formation, since forskolin, a direct activator of adenylate cyclase mimicked this effect on WT-expressing CHO cells. DNA synthesis was found to be inhibited in these cell lines, indicating that cAMP may also have determined the inhibitory effect on cell growth, in addition to the cell transformation from a tumorigenic to a non-tumorigenic phenotype. However a role for an increased Ca2(+) influx induced by the mutants in non-stimulated cells cannot be ruled out since this ion also was shown to cause transformed cells to regain the morphology and growth regulation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study was performed to investigate the effect of treatment with furosemide on the pressor response induced by intracerebroventricular (i.c.v.) injections of cholinergic (carbachol) and adrenergic (norepinephrine) agonists, angiotensin II (ANGII) and hypertonic saline (HS, 2 M NaCl). The changes induced by furosemide treatment on the pressor response to intravenous (i.v.) norepinephrine, ANGII and arginine vasopressin (AVP) were also studied. Rats with a stainless-steel cannula implanted into the lateral ventricle (LV) were used. Two injections of furosemide (30 mg/kg b.wt. each) were performed 12 and 1 h before the experiments. Treatment with furosemide reduced the pressor response induced by carbachol, norepinephrine and ANGII i.c.v., but no change was observed in the pressor response to i.c.v. 2 M NaCl. The pressor response to i.v. ANGII and norepinephrine, but not AVP, was also reduced after treatment with furosemide. These results show that the treatment with furosemide impairs the pressor responses induced by central or peripheral administration of adrenergic agonist or ANGII, as well as those induced by central cholinergic activation. The results suggest that the treatment with furosemide impairs central and peripheral pressor responses mediated by sympathetic activation and ANGII, but not those produced by AVP. © 1992.
Resumo:
In the present study we investigated the effect of electrolytic lesion of the medial septal area (MSA) on the pressor and dipsogenic response to cholinergic activation and angiotensin II (ANGII) injection into the subfornical organ (SFO) in rats. In addition the effect of MSA lesion on the natriuresis, kaliuresis and diuresis after cholinergic activation of the SFO was also investigated. Sham- and MSA-lesioned rats with a stainless steel cannula implanted into the SFO was used. The injection of ANGII (12 ng) into the SFO in sham rats produced pressor (24 ± 2 mmHg) and dipsogenic (9.6 ± 1.1 ml/h) responses. MSA lesion, both acute (2-6 days) and chronic (15-19 days), reduced the pressor (14 ± 2 mmHg) and dipsogenic (2.7 ± 1 ml/h) responses to ANGII into SFO. The injection of the cholinergic agonist carbachol (2 nmol) into the SFO in sham rats produced pressor (48 ± 4 mmHg), dipsogenic (10 ± 1.2 ml/h), natriuretic (457 ± 58 μEq/2 h) and kaliuretic (249 ± 16 μEq/2 h) responses. Acute, but not chronic MSA lesion reduced the pressor (27 ± 3 mmHg), natriuretic (198 ± 55 μEq/2 h) and kaliuretic (128 ± 16 μEq/2 h) responses to carbachol into SFO. No change in the dipsogenic response to carbachol into the SFO was observed in MSA-lesioned rats. Antidiuresis after carbachol was observed only in MSA-lesioned rats. The present results show that the MSA plays a role on the pressor, natriuretic and kaliuretic responses to cholinergic activation of the SFO in rats and on the pressor and dipsogenic responses to ANGII into the same area. In addition, they provide circumstancial evidence for separate circuits subserving the dipsogenic response to central cholinergic and angiotensinergic activation. A facilited diuresis after MSA lesion is also suggested.
Resumo:
Angiotensin II (All), the active component of the renin angiotensin system (RAS), plays a vital role in the regulation of physiological processes of the cardiovascular system, but also has autocrine and paracrine actions in various tissues and organs. Many studies have shown the existence of RAS in the pancreas of humans and rodents. The aim of this study was to evaluate potential signaling pathways mediated by All in isolated pancreatic islets of rats. Phosphorylation of MAPKs (ERK1/2, JNK and p38MAPK), and the interaction between proteins JAK/STAT were evaluated. All increased JAK2/STAT1 (42%) and JAK2/STAT3 (100%) interaction without altering the total content of JAK2. Analyzing the activation of MAPKs (ERK1/2, JNK and p38MAPK) in isolated pancreatic islets from rats we observed that All rapidly (3 min) promoted a significant increase in the phosphorylation degree of these proteins after incubation with the hormone. Curiously JNK protein phosphorylation was inhibited by DPI, suggesting the involvement of NAD(P)H oxidase in the activation of protein. (C) 2012 Elsevier B.V. All rights reserved.