939 resultados para AMMONIUM-SALTS
Resumo:
The preparation and thermal decomposition ammonium selenate and calcium and beryllium selenates have been reported previously. However, there are not any information in the literature concerning the thermal decomposition of double selenates of calcium, of beryllium and ammonium. Thermogravimetry (TG), Differential Thermal Analysis (DTA) were used in the studies and characterisation of these compounds.
Resumo:
Nitrogen (N) mineralization dynamics in no-till systems is affected, among other factors, by N amount and quality in the mulch and by climatic conditions. Leaching of NO3-N and NH4-N from six plant species used as soil cover crops in tropical environments were evaluated when the straw was submitted to rainfall after chemical desiccation. Millet (Pennisetum glaucum), guinea sorghum (Sorghum vulgare), black oat (Avena strigosa), triticale (Triticum secale), Indian hemp (Crotalaria juncea), and brachiaria (Brachiaria decumbens) were grown in a greenhouse, in Botucatu-SP, Brazil. Forty-five days after emergence, the plants were cut at the root collar, oven-dried, and submitted to simulated rainfalls of 4.4, 8.7, 17.04, 34.9, and 69.8 mm, considering an amount of straw equivalent to 8 t ha(-1) of dry matter. The amounts of N-NO3- extracted from the straw by rainwater were very small. However, accumulated rainfall around 70 mm caused ammonium leaching ranging from 2.5 to 9.5kg ha(-1), depending on the species. Plant residues of triticale and black oat (grasses) and Indian hemp (legume) showed high N leaching intensity with the first rains after chemical desiccation. The amount of N leached from straw was highly correlated with N tissue content.
Resumo:
1. We describe the isolation of viable merozoites from erythrocytes infected with Babesia bovis or Babesia bigemina organisms by ammonium chloride lysis.2. Parasite morphology was examined by both light and transmission electron microscopy. Erythrocyte-free parasites maintain their viability and infectivity, retain their antigenicity and are suitable for use in the indirect fluorescent antibody assay.
Resumo:
Alkaline metal doped organic - inorganic hybrids have potential applications in the field of portable energy sources. Attractive sol - gel derived urea cross-linked polyether, siloxane - PPO ( poly( propylene oxide)) hybrids doped with sodium salts ( NaClO4 and NaBF4) were examined by multi-spectroscopic approach that includes complex impedance, X-ray powder diffraction (XRPD), small angle X-ray scattering (SAXS), Si-29 and Na-23 magic-angle spinning nuclear magnetic resonance (NMR/MAS), Na K-edge X-ray absorption near edge structure (XANES) and Raman spectroscopies. The goals of this work were to determine which cation coordinating site of the host matrix ( ether oxygen atoms or carbonyl oxygen atoms) is active in each of the materials analyzed, its influence on the nanostructure of the samples and its relation with the thermal and electrical properties. The main conclusion derived from this study is that the NaBF4 salt has a much lower solubility in the hybrid matrix than the NaClO4 salt. Furthermore, the addition of a large amount of salt plays a major role in the hybrid nanostructure and electrical properties, modifying the PPO chain conformation, weakening or breaking the hydrogen bond of the polyether - urea associations and changing the polycondensation and aggregation processes involving the siloxane species.
Resumo:
Based on dynamic rheological measurements, sucrose, glycerol and magnesium chloride (MgCl2) prevented egg yolk gelation at concentrations of 2% and higher, These additives showed improved cryoprotectant effects as their concentrations were increased, Sodium chloride (NaCl) at higher than 2% also prevented gelation but at 10%, it caused a considerable increase in viscosity of unfrozen yolk, Calcium chloride (CaCl2) showed an opposite effect, promoting protein coagulation before freezing, Samples with 2% CaCl2 gelled completely after 36h at -24 degrees C, Before freezing, potassium chloride (KCl) in the range 2-10% had an effect similar to that of NaCl, However, after freezing its effect changed, Yolk with 2% KCl, frozen 36h at -24 degrees C, showed very elastic behavior.
Resumo:
Rheological studies were carried out in the fermentation broth of a polysaccharide-producing microorganism free of soil. This microorganism was designated 4B. The bacteria 4B was inoculated in the fermentation broth, which consisted of a carbon source and mineral salts, and it was incubated in a rotating agitator at 30 degreesC for 72 h at 210 rpm. A rheometer of concentric cylinders equipped with a thermostatic bath was used and the readings were taken at 25 degreesC. A study was made of the influence of the fermentation time and the readings were made after 24, 48 and 72 h of incubation, using, separately, sucrose and glucose as carbon sources. The influence of the salt concentrations was determined in each carbon source; the salts used were NaCl, KCl and CaCl2 in the concentrations of 0.4%, 1.0%, 2.0% and 3.0%. It was observed that the fermentation broth behaves as a non-Newtonian fluid and it presents pseudoplastic behaviour. Calculations were made of the flow behaviour index (n) and the consistency index (k) of the samples after 24, 48 and 72 h of fermentation, and it was observed that the 72 h sample presented higher k and consequently higher apparent viscosity. of the carbon sources used, the sucrose presented higher viscous broths after 24 and 48 h, and the glucose after 72 h of fermentation. With relation to the effect of the addition of salts, the CaCl2 presented a higher influence on the viscosity of the fermentation broths. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The purpose of this work is to obtain spherical particles yttrium iron garnet (YIG) by coprecipitation technique. The spherical particles were obtained from either nitrate or chloride salt solutions by controlling the precipitation medium. Different agents of dispersion such as PVP and ammonium iron sulfate were used to optimize the shape and size of YIG. Samples were characterized by X-ray diffraction, scanning electron microscopy and vibrating sample magnetometry. The results show that the samples phase transition takes place at 850°C (orthorhombic phase) and at 1200°C (cubic phase). Spherical shape particles, with diameter of around 0.5 μm, present magnetization values close to the bulk value (26 emu g -1). © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This study was conducted to observe the rat subcutaneous connective tissue reaction to implanted dentin tubes that were filled with mineral trioxide aggregate, Sealapex, Calciobiotic Root Canal Sealer (CRCS), Sealer 26, and the experimental material, Sealer Plus. The animals were sacrificed after 7 and 30 days, and the specimens were prepared for histological analysis after serial sections with a hard-tissue microtome. The undecalcified sections were examined with polarized light after staining according to the Von Kossa technique for calcium. At the tube openings, there were Von Kossa-positive granules that were birefringent to polarized light. Next to these granulations, there was irregular tissue, like a bridge, that was Von Kossa-positive. The dentin walls of the tubes exhibited a structure highly birefringent to polarized light, usually like a layer, in the tubules. These results were observed with all the studied materials, except the CRCS, which didn't exhibit any kind of mineralized structure. The results suggest that among the materials studied, the CRCS could have the least possibility of encouraging hard tissue deposition.
Resumo:
A method is described for the simultaneous determination of Cd, Cr, Ni and Pb in mineral water samples by graphite furnace atomic absorption spectrometry with a transversely heated graphite atomizer (THGA) and a longitudinal Zeeman-effect background correction system. The electrothermal behavior of analytes during pyrolysis and atomization steps was studied without modifier, in presence of 5 μg Pd and 3 μg Mg(NO3)2 and in presence of 50 μg NH4H2PO4 and 3 μg Mg(NO3)2. A volume of 20 μL of a 0.028 mol L -1 HNO3 solution containing 50 μg L-1 Ni and Pb, 10 μg L-1 Cr and 5 μg L-1 Cd was dispensed into the graphite tube at 20°C. The mixture palladium/magnesium was selected as the optimum modifier. The pyrolysis and atomization temperatures were fixed at 1000°C and 2300°C, respectively. The characteristic masses were calculated as 2.2 pg Cd, 10 pg Cr, 42 pg Ni and 66 pg Pb and the lifetime of the graphite tube was around 600 firings. Limits of detection based on integrated absorbance were 0.02 μg L-1Cd, 0.94 μg L-1 Cr, 0.45 μg L-1 Ni and 0.75 μg L-1 Pb, which exceeded the requirements of Brazilian Food Regulation that establish the maximum permissible level for Cd, Cr, Ni and Pb at 3 μg L-1, 50 μg L-1, 20 μg L-1 and 10 μg L-1, respectively. The recoveries of Cd, Cr, Ni and Pb added to mineral water samples varied within the 93-108%, 96-104%, 87-101% and 98-108% ranges, respectively. Results of analysis of standard reference materials (National Institute of Standards and Technology: 1640-Trace Elements in Natural Water; 1643d-Trace Elements in Water) were in agreement with certified values at the 95% confidence level.
Resumo:
After harvest, sugarcane residues left on the soil surface can alter nitrogen (N) dynamics in the plant-soil system. In Oxisols, the nitrogen fertilizer applied had its effects on the levels of ammonium and nitrate in the soil, N concentration in the plant leaves, and on the growth and productivity of second ratoon plants. The N rates tested were of 0, 60, 120, 180, and 240 kg ha-1. Each treatment was replicated four times. Four months after the experiment was started, ammonium and nitrate concentration in the soil, N levels in plant leaves, and plant growth were evaluated. Productivity was evaluated 11 months after the experiment was set. By increasing the content of mineral N in soil, plant growth variables reflected differences in the production of stems; however, it did not affect foliar N. The use of leaf analysis was not important to assess the nutritional status of nitrogen in the ratoon sugarcane. Nitrogen concentration in soil was affected by nitrogen fertilization, but not the N content in leaves. The rate of 138 kg N ha-1enabled greater production of sugarcane stalks (140 t ha-1). © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
We present a detailed low-temperature investigation of the statics and dynamics of the anions and methyl groups in the organic conductors (TMTSF) 2PF6 and (TMTSF)2AsF6 (TMTSF: tetramethyl-tetraselenafulvalene). The 4 K neutron-scattering structure refinement of the fully deuterated (TMTSF)2PF6-D12 salt allows locating precisely the methyl groups at 4 K. This structure is compared to the one of the fully hydrogenated (TMTSF)2PF6-H12 salt previously determined at the same temperature. Surprisingly, it is found that deuteration corresponds to the application of a negative pressure of 5×102 MPa to the H12 salt. Accurate measurements of the Bragg intensity show anomalous thermal variations at low temperature both in the deuterated PF 6 and AsF6 salts. Two different thermal behaviors have been distinguished. Small Bragg-angle measurements reflect the presence of low-frequency modes at characteristic energies θE = 8.3 K and θE = 6.7 K for the PF6-D12 and AsF6-D12 salts, respectively. These modes correspond to the low-temperature methyl group motion. Large Bragg-angle measurements evidence an unexpected structural change around 55 K, which probably corresponds to the linkage of the anions to the methyl groups via the formation of F...D-CD2 bonds observed in the 4 K structural refinement. Finally we show that the thermal expansion coefficient of (TMTSF)2PF6 is dominated by the librational motion of the PF6 units. We quantitatively analyze the low-temperature variation of the lattice expansion via the contribution of Einstein oscillators, which allows us to determine for the first time the characteristic frequency of the PF6 librations: θE ≈ 50 K and θE = 76 K for the PF6-D12 and PF6-H12 salts, respectively. © 2013 American Physical Society.
Resumo:
This work presents the first study and development of an electronic tongue analysis system for the monitoring of nitrogen stable species: nitrate, nitrite and ammonium in water. The electronic tongue was composed of an array of 15 potentiometric poly(vinyl chloride) membrane sensors sensitive to cations and anions plus an artificial neural network (ANN) response model. The building of the ANN model was performed in a medium containing sodium, potassium, and chloride as interfering ions, thus simulating real environmental samples. The correlation coefficient in the cross-validation of nitrate, nitrite and ammonium was satisfactory in the three cases with values higher than 0.92. Finally, the utility of the proposed system is shown in the monitoring of the photoelectrocatalytic treatment of nitrate. © 2013 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)