941 resultados para AHP - Analytic Hierarchy Proces
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES)
Resumo:
In search for better competitiveness, the automotive industry has discussed and applied several concepts related to people and processes. However, in many organizations, the adopted concepts are implemented and kept unarticulated. In this context, authors recognize the role of the knowledge as competitive advantage, but it is still dealt in an implicit way with the traditional models of Production Management. Exploring opportunities in this scenario, this Thesis aims to analyse worker knowledge sharing using factors of Knowledge Management, Work Organization and Production Organization. For the realization of the present Thesis, the scope of the research was restricted to be the labour environment of the glass plants shop floor. The choice of the glass sector is justified due to high dependency on the tacit knowledge of blue-collars. The research uses a qualitative-quantitative approach and employs interviews with workers and managers to identify factors. To assess the importance of these factors in the management judgments, is employed the technique Incomplete Pairwise Comparisons based on Analytic Hierarchy Process Saaty (2001). The result indicates integration among factors and highlights the importance of systematic and technical conversation among operators to share better your knowledge. Also, worker knowledge sharing is improved using communication, training and work instruction. This research extends the conceptual frameworks encountered in literature from the factors integration of Knowledge Management with the Organization of Work and the Production and makes explicit use of the theme of knowledge. This contributes to promote of a favourable context for the creation and sharing of knowledge, among the people in the labour environment, and to support incremental innovation
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
Opportunistic routing (OR) employs a list of candidates to improve wireless transmission reliability. However, conventional list-based OR restricts the freedom of opportunism, since only the listed nodes are allowed to compete for packet forwarding. Additionally, the list is generated statically based on a single network metric prior to data transmission, which is not appropriate for mobile ad-hoc networks (MANETs). In this paper, we propose a novel OR protocol - Context-aware Adaptive Opportunistic Routing (CAOR) for MANETs. CAOR abandons the idea of candidate list and it allows all qualified nodes to participate in packet transmission. CAOR forwards packets by simultaneously exploiting multiple cross-layer context information, such as link quality, geographic progress, energy, and mobility.With the help of the Analytic Hierarchy Process theory, CAOR adjusts the weights of context information based on their instantaneous values to adapt the protocol behavior at run-time. Moreover, CAOR uses an active suppression mechanism to reduce packet duplication. Simulation results show that CAOR can provide efficient routing in highly mobile environments. The adaptivity feature of CAOR is also validated.
Resumo:
Agricultural water management needs to evolve in view of increased water scarcity, especially when farming and natural protected areas are closely linked. In the study site of Don?ana (southern Spain), water is shared by rice producers and a world heritage biodiversity ecosystem. Our aim is to contribute to defining adaptation strategies that may build resilience to increasing water scarcity and minimize water conflicts among agricultural and natural systems. The analytical framework links a participatory process with quantitative methods to prioritize the adaptation options. Bottom-up proposed adaptation measures are evaluated by a multi-criteria analysis (MCA) that includes both socioeconomic criteria and criteria of the ecosystem services affected by the adaptation options. Criteria weights are estimated by three different methods?analytic hierarchy process, Likert scale and equal weights?that are then compared. Finally, scores from an MCA are input into an optimization model used to determine the optimal land-use distribution in order to maximize utility and land-use diversification according to different scenarios of funds and water availability. While our results show a spectrum of perceptions of priorities among stakeholders, there is one overriding theme that is to define a way to restore part of the rice fields to natural wetlands. These results hold true under the current climate scenario and evenmore so under an increased water scarcity scenario.
Resumo:
The evaluation and selection of industrial projects before investment decision is customarily done using marketing, technical and financial information. Subsequently, environmental impact assessment and social impact assessment are carried out mainly to satisfy the statutory agencies. Because of stricter environment regulations in developed and developing countries, quite often impact assessment suggests alternate sites, technologies, designs, and implementation methods as mitigating measures. This causes considerable delay to complete project feasibility analysis and selection as complete analysis requires to be taken up again and again till the statutory regulatory authority approves the project. Moreover, project analysis through above process often results sub-optimal project as financial analysis may eliminate better options, as more environment friendly alternative will always be cost intensive. In this circumstance, this study proposes a decision support system, which analyses projects with respect to market, technicalities, and social and environmental impact in an integrated framework using analytic hierarchy process, a multiple-attribute decision-making technique. This not only reduces duration of project evaluation and selection, but also helps select optimal project for the organization for sustainable development. The entire methodology has been applied to a cross-country oil pipeline project in India and its effectiveness has been demonstrated. © 2005 Elsevier B.V. All rights reserved.
Resumo:
The evaluation and selection of industrial projects before investment decision is customarily done using marketing, technical, and financial information. Subsequently, environmental impact assessment and social impact assessment are carried out mainly to satisfy the statutory agencies. Because of stricter environment regulations in developed and developing countries, quite often impact assessment suggests alternate sites, technologies, designs, and implementation methods as mitigating measures. This causes considerable delay to complete project feasibility analysis and selection as complete analysis requires to be taken up again and again until the statutory regulatory authority approves the project. Moreover, project analysis through the above process often results in suboptimal projects as financial analysis may eliminate better options as more environment friendly alternative will always be cost intensive. In this circumstance, this study proposes a decision support system which analyses projects with respect to market, technicalities, and social and environmental impact in an integrated framework using analytic hierarchy process, a multiple attribute decision-making technique. This not only reduces duration of project evaluation and selection, but also helps select an optimal project for the organization for sustainable development. The entire methodology has been applied to a cross-country oil pipeline project in India and its effectiveness has been demonstrated. © 2008, IGI Global.
Resumo:
This study demonstrates a quantitative approach to construction risk management through analytic hierarchy process and decision tree analysis. All the risk factors are identified, their effects are quantified by determining probability and severity, and various alternative responses are generated with cost implication for mitigating the quantified risks. The expected monetary values are then derived for each alternative in a decision tree framework and subsequent probability analysis aids the decision process in managing risks. The entire methodology is explained through a case application of a cross-country petroleum pipeline project in India and its effectiveness in project management is demonstrated.
Resumo:
Korea has increasingly adopted design-build for public construction projects in the last few years. There is a much greater awareness of the need to change a system based on ‘Value for Money’ which is high on the government's agenda. A whole life performance bid evaluation model is proposed to aid decision makers in the selection of a design-builder. This is based on the integration of a framework using an analytic hierarchy process as the bid awarding system is being changed from one based on lowest price, to one based on best value over the life-cycle. Key criteria like whole life cost, service life planning and design quality are important through the key stages of evaluation process. The model uses a systematic and holistic approach which enables a public sector to make better decisions in design-builder selection, which will deliver whole life benefits, based on long term cost-effectiveness and whole life.
Resumo:
This study proposes an integrated analytical framework for effective management of project risks using combined multiple criteria decision-making technique and decision tree analysis. First, a conceptual risk management model was developed through thorough literature review. The model was then applied through action research on a petroleum oil refinery construction project in the Central part of India in order to demonstrate its effectiveness. Oil refinery construction projects are risky because of technical complexity, resource unavailability, involvement of many stakeholders and strict environmental requirements. Although project risk management has been researched extensively, practical and easily adoptable framework is missing. In the proposed framework, risks are identified using cause and effect diagram, analysed using the analytic hierarchy process and responses are developed using the risk map. Additionally, decision tree analysis allows modelling various options for risk response development and optimises selection of risk mitigating strategy. The proposed risk management framework could be easily adopted and applied in any project and integrated with other project management knowledge areas.
Resumo:
Guest editorial Ali Emrouznejad is a Senior Lecturer at the Aston Business School in Birmingham, UK. His areas of research interest include performance measurement and management, efficiency and productivity analysis as well as data mining. He has published widely in various international journals. He is an Associate Editor of IMA Journal of Management Mathematics and Guest Editor to several special issues of journals including Journal of Operational Research Society, Annals of Operations Research, Journal of Medical Systems, and International Journal of Energy Management Sector. He is in the editorial board of several international journals and co-founder of Performance Improvement Management Software. William Ho is a Senior Lecturer at the Aston University Business School. Before joining Aston in 2005, he had worked as a Research Associate in the Department of Industrial and Systems Engineering at the Hong Kong Polytechnic University. His research interests include supply chain management, production and operations management, and operations research. He has published extensively in various international journals like Computers & Operations Research, Engineering Applications of Artificial Intelligence, European Journal of Operational Research, Expert Systems with Applications, International Journal of Production Economics, International Journal of Production Research, Supply Chain Management: An International Journal, and so on. His first authored book was published in 2006. He is an Editorial Board member of the International Journal of Advanced Manufacturing Technology and an Associate Editor of the OR Insight Journal. Currently, he is a Scholar of the Advanced Institute of Management Research. Uses of frontier efficiency methodologies and multi-criteria decision making for performance measurement in the energy sector This special issue aims to focus on holistic, applied research on performance measurement in energy sector management and for publication of relevant applied research to bridge the gap between industry and academia. After a rigorous refereeing process, seven papers were included in this special issue. The volume opens with five data envelopment analysis (DEA)-based papers. Wu et al. apply the DEA-based Malmquist index to evaluate the changes in relative efficiency and the total factor productivity of coal-fired electricity generation of 30 Chinese administrative regions from 1999 to 2007. Factors considered in the model include fuel consumption, labor, capital, sulphur dioxide emissions, and electricity generated. The authors reveal that the east provinces were relatively and technically more efficient, whereas the west provinces had the highest growth rate in the period studied. Ioannis E. Tsolas applies the DEA approach to assess the performance of Greek fossil fuel-fired power stations taking undesirable outputs into consideration, such as carbon dioxide and sulphur dioxide emissions. In addition, the bootstrapping approach is deployed to address the uncertainty surrounding DEA point estimates, and provide bias-corrected estimations and confidence intervals for the point estimates. The author revealed from the sample that the non-lignite-fired stations are on an average more efficient than the lignite-fired stations. Maethee Mekaroonreung and Andrew L. Johnson compare the relative performance of three DEA-based measures, which estimate production frontiers and evaluate the relative efficiency of 113 US petroleum refineries while considering undesirable outputs. Three inputs (capital, energy consumption, and crude oil consumption), two desirable outputs (gasoline and distillate generation), and an undesirable output (toxic release) are considered in the DEA models. The authors discover that refineries in the Rocky Mountain region performed the best, and about 60 percent of oil refineries in the sample could improve their efficiencies further. H. Omrani, A. Azadeh, S. F. Ghaderi, and S. Abdollahzadeh presented an integrated approach, combining DEA, corrected ordinary least squares (COLS), and principal component analysis (PCA) methods, to calculate the relative efficiency scores of 26 Iranian electricity distribution units from 2003 to 2006. Specifically, both DEA and COLS are used to check three internal consistency conditions, whereas PCA is used to verify and validate the final ranking results of either DEA (consistency) or DEA-COLS (non-consistency). Three inputs (network length, transformer capacity, and number of employees) and two outputs (number of customers and total electricity sales) are considered in the model. Virendra Ajodhia applied three DEA-based models to evaluate the relative performance of 20 electricity distribution firms from the UK and the Netherlands. The first model is a traditional DEA model for analyzing cost-only efficiency. The second model includes (inverse) quality by modelling total customer minutes lost as an input data. The third model is based on the idea of using total social costs, including the firm’s private costs and the interruption costs incurred by consumers, as an input. Both energy-delivered and number of consumers are treated as the outputs in the models. After five DEA papers, Stelios Grafakos, Alexandros Flamos, Vlasis Oikonomou, and D. Zevgolis presented a multiple criteria analysis weighting approach to evaluate the energy and climate policy. The proposed approach is akin to the analytic hierarchy process, which consists of pairwise comparisons, consistency verification, and criteria prioritization. In the approach, stakeholders and experts in the energy policy field are incorporated in the evaluation process by providing an interactive mean with verbal, numerical, and visual representation of their preferences. A total of 14 evaluation criteria were considered and classified into four objectives, such as climate change mitigation, energy effectiveness, socioeconomic, and competitiveness and technology. Finally, Borge Hess applied the stochastic frontier analysis approach to analyze the impact of various business strategies, including acquisition, holding structures, and joint ventures, on a firm’s efficiency within a sample of 47 natural gas transmission pipelines in the USA from 1996 to 2005. The author finds that there were no significant changes in the firm’s efficiency by an acquisition, and there is a weak evidence for efficiency improvements caused by the new shareholder. Besides, the author discovers that parent companies appear not to influence a subsidiary’s efficiency positively. In addition, the analysis shows a negative impact of a joint venture on technical efficiency of the pipeline company. To conclude, we are grateful to all the authors for their contribution, and all the reviewers for their constructive comments, which made this special issue possible. We hope that this issue would contribute significantly to performance improvement of the energy sector.
Resumo:
Purpose: The purpose of this paper is to review the literature which focuses on four major higher education decision problems. These are: resource allocation; performance measurement; budgeting; and scheduling. Design/methodology/approach: Related articles appearing in the international journals from 1996 to 2005 are gathered and analyzed so that the following three questions can be answered: "What kind of decision problems were paid most attention to?"; "Were the multiple criteria decision-making techniques prevalently adopted?"; and "What are the inadequacies of these approaches?" Findings: Based on the inadequacies, some improvements and possible future work are recommended, and a comprehensive resource allocation model is developed taking account of these factors. Finally, a new knowledge-based goal programming technique which integrates some operations of analytic hierarchy process is proposed to tackle the model intelligently. Originality/value: Higher education has faced the problem of budget cuts or constrained budgets for the past 30 years. Managing the process of the higher education system is, therefore, a crucial and urgent task for the decision makers of universities in order to improve their performance or competitiveness. © Emerald Group Publishing Limited.
Resumo:
The existing method of pipeline monitoring, which requires an entire pipeline to be inspected periodically, wastes time and is expensive. A risk-based model that reduces the amount of time spent on inspection has been developed. This model not only reduces the cost of maintaining petroleum pipelines, but also suggests an efficient design and operation philosophy, construction method and logical insurance plans.The risk-based model uses analytic hierarchy process, a multiple attribute decision-making technique, to identify factors that influence failure on specific segments and analyze their effects by determining the probabilities of risk factors. The severity of failure is determined through consequence analysis, which establishes the effect of a failure in terms of cost caused by each risk factor and determines the cumulative effect of failure through probability analysis.
Resumo:
Projects that are exposed to uncertain environments can be effectively controlled with the application of risk analysis during the planning stage. The Analytic Hierarchy Process, a multiattribute decision-making technique, can be used to analyse and assess project risks which are objective or subjective in nature. Among other advantages, the process logically integrates the various elements in the planning process. The results from risk analysis and activity analysis are then used to develop a logical contingency allowance for the project through the application of probability theory. The contingency allowance is created in two parts: (a) a technical contingency, and (b) a management contingency. This provides a basis for decision making in a changing project environment. Effective control of the project is made possible by the limitation of the changes within the monetary contingency allowance for the work package concerned, and the utilization of the contingency through proper appropriation. The whole methodology is applied to a pipeline-laying project in India, and its effectiveness in project control is demonstrated.
Resumo:
The main aim of this research is to demonstrate strategic supplier performance evaluation of a UK-based manufacturing organisation using an integrated analytical framework. Developing long term relationship with strategic suppliers is common in today's industry. However, monitoring suppliers' performance all through the contractual period is important in order to ensure overall supply chain performance. Therefore, client organisations need to measure suppliers' performance dynamically and inform them on improvement measures. Although there are many studies introducing innovative supplier performance evaluation frameworks and empirical researches on identifying criteria for supplier evaluation, little has been reported on detailed application of strategic supplier performance evaluation and its implication on overall performance of organisation. Additionally, majority of the prior studies emphasise on lagging factors (quality, delivery schedule and value/cost) for supplier selection and evaluation. This research proposes both leading (organisational practices, risk management, environmental and social practices) and lagging factors for supplier evaluation and demonstrates a systematic method for identifying those factors with the involvement of relevant stakeholders and process mapping. The contribution of this article is a real-life case-based action research utilising an integrated analytical model that combines quality function deployment and the analytic hierarchy process method for suppliers' performance evaluation. The effectiveness of the method has been demonstrated through number of validations (e.g. focus group, business results, and statistical analysis). Additionally, the study reveals that enhanced supplier performance results positive impact on operational and business performance of client organisation.