962 resultados para ADDUCT CATIONS
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The synthesis and crystal structure determination (at 293 K) of the title complex, Cs[Fe(C8H6BrN3OS)2], are reported. The compound is composed of two dianionic O,N,S-tridentate 5-bromosalicylaldehyde thiosemicarbazonate(2-) ligands coordinated to an FeIII cation, displaying a distorted octahedral geometry. The ligands are orientated in two perpendicular planes, with the O- and S-donor atoms in cis positions and the N-donor atoms in trans positions. The complex displays intermolecular N-H...O and N-H...Br hydrogen bonds, creating R44(18) rings, which link the FeIII units in the a and b directions. The FeIII cation is in the low-spin state at 293 K.
Resumo:
CuAlO2 has been examined as a potential luminescent material by substituting Eu for Al cations in the delafossite structure. CuAlO2:Eu3+ nanofibers have been prepared via electrospinning for the ease of mitigating synthesis requirements and for future optoelectronics and emerging applications. Single-phase CuAlO2 fibers could be obtained at a temperature of 1100 °C in air. The Eu was successfully doped in the delafossite structure and two strong emission bands at ~405 and 610 nm were observed in the photoluminescence spectra. These bands are due to the intrinsic near-band-edge transition of CuAlO2 and the f-f transition of the Eu3+ activator, respectively. Further electrical characterization indicated that these fibers exhibit semiconducting behavior and the introduction of Eu could act as band-edge modifiers, thus changing the thermal activation energies. In light of this study, CuAlO2:Eu3+ fibers with both strong photoluminescence and p-type conductivity could be produced by tailoring the rare earth doping concentrations.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Results of experimental studies of ion exchange properties of manganese and iron minerals in micronodules from diverse bioproductive zones of the World Ocean were considered. It was found that sorption behavior of these minerals was similar to that of ore minerals from ferromanganese nodules and low-temperature hydrothermal crusts. The exchange complex of minerals in the micronodules includes the major (Na**+, K**+, Ca**2+, Mg**2+, and Mn**2+) and subordinate (Ni**2+, Cu**2+, Co**2+, Pb**2+, and others) cations. Reactivity of theses cations increases from Pb**2+ and Co**2+ to Na**+ and Ca**2+. Exchange capacity of micronodule minerals increases from alkali to heavy metal cations. Capacity of iron and manganese minerals in oceanic micronodules increases in the following series: goethite < goethite + birnessite < todorokite + asbolane-buserite + birnessite < asbolane-buserite + birnessite < birnessite + asbolane-buserite < birnessite + vernadite ~= Fe-vernadite + Mn-feroxyhyte. Obtained data supplement available information on ion exchange properties of oceanic ferromanganese sediments and refine the role of sorption processes in redistribution of metal cations at the bottom water - sediment interface during micronodule formation and growth.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
The basic copper(II) carboxylate adduct, [Cu2-OH(O 2CCF3)3(quinoline)2]2, has been shown by an X-ray structural analysis to have a novel tetranuclear structure; magnetic susceptibility data show that substantial Cu-Cu interaction is present in this compound.
Resumo:
Ionic liquid crystals (ILCs) allow the combination of the high ionic conductivity of ionic liquids (ILs) with the supramolecular organization of liquid crystals (LCs). ILCs salts were obtained by the assembly of long-chained diketonylpyridinium cations of the type [HOO^(R(n)pyH)] + and BF_(4)^(-) , ReO_(4)^(-), NO_(3)^(-), CF_(3)SO_(3)^(-), CuCl_(4)^(2-) counter-ions. We have studied the thermal behavior of five series of compounds by differential scanning calorimetry (DSC) and hot stage polarized light optical microscopy (POM). All materials show thermotropic mesomorphism as well as crystalline polymorphism. X-ray diffraction of the [HOO^(R(12)pyH)][ReO_(4)] crystal reveals a layered structure with alternating polar and apolar sublayers. The mesophases also exhibit a lamellar arrangement detected by variable temperature powder X-ray diffraction. The CuCl_(4)^(2-) salts exhibit the best LC properties followed by the ReO_(4)^(-) ones due to low melting temperature and wide range of existence. The conductivity was probed for the mesophases in one species each from the ReO_(4)^(-) , and CuCl_(4)^(2-) families, and for the solid phase in one of the non-mesomorphic Cl^(-) salts. The highest ionic conductivity was found for the smectic mesophase of the ReO_(4)^(-) containing salt, whereas the solid phases of all salts were dominated by electronic contributions. The ionic conductivity may be favored by the mesophase lamellar structure.
Resumo:
Human immunodeficiency virus (HIV) rapidly evolves through generation and selection of mutants that can escape drug therapy. This process is fueled, in part, by the presumably highly error prone polymerase reverse transcriptase (RT). Fidelity of polymerases can be influenced by cation co-factors. Physiologically, magnesium (Mg2+) is used as a co-factor by RT to perform catalysis, however, alternative cations including manganese (Mn2+), cobalt (Co2+), and zinc (Zn2+) can also be used. I demonstrate here that fidelity and inhibition of HIV RT can be influenced differently, in vitro, by divalent cations depending on their concentration. The reported mutation frequency for purified HIV RT in vitro is typically in the 10-4 range (per nucleotide addition), making the enzyme several-fold less accurate than most polymerases. Paradoxically, results examining HIV replication in cells indicate an error frequency that is ~10 times lower than the error rate obtained in the test tube. Here, I reconcile, at least in part, these discrepancies by showing that HIV RT fidelity in vitro is in the same range as cellular results, in physiological concentrations of free Mg2+ (~0.25 mM). At low Mg2+, mutation rates were 5-10 times lower compared to high Mg2+ conditions (5-10 mM). Alternative divalent cations also have a concentration-dependent effect on RT fidelity. Presumed promutagenic cations Mn2+ and Co2+ decreases the fidelity of RT only at elevated concentrations, and Zn2+, when present in low concentration, increases the fidelity of HIV-1 RT by ~2.5 fold compared to Mg2+. HIV-1 and HIV-2 RT inhibition by nucleoside (NRTIs) and non-nucleoside RT inhibitors (NNRTIs) in vitro is also affected by the Mg2+ concentration. NRTIs lacking 3'-OH group inhibited both enzymes less efficiently in low Mg2+ than in high Mg2+; whereas inhibition by the “translocation defective RT inhibitor”, which retains the 3ʹ-OH, was unaffected by Mg2+ concentration, suggesting that NRTIs with a 3ʹ-OH group may be more potent than other NRTIs. In contrast, NNRTIs were more effective in low vs. high Mg2+ conditions. Overall, the studies presented reveal strategies for designing novel RT inhibitors and strongly emphasize the need for studying HIV RT and RT inhibitors in physiologically relevant low Mg2+ conditions.
Resumo:
The interactions established by mono and polyvalent cations in natural media have important implications on the structure formation, function and physico-chemical behavior of biomolecules, playing therefore a critical role in biochemical processes. In order to further elucidate the molecular phenomena behind the cation specific effects in biological environments, and clarify the influence of the charge of the ions, solubility measurements and molecular dynamics simulations were performed for aqueous solutions of three amino acids (alanine, valine and isoleucine), in the presence of a series of inorganic salts comprising mono-, di- and trivalent cations (LiCl, Li2SO4, K2SO4, CaCl2, AlCl3 and Al-2(SO4)(3)). The evidence gathered indicates that the mechanism by which (salting-in inducing) polyvalent cations affect the solubility of amino acids in aqueous solutions is different from that of monovalent cations. A consistent and refined molecular description of the effect of the cation on the solubility of amino acids based on specific interactions of the cations with the negatively charged moieties of the biomolecules is here proposed.
Resumo:
The direct CO2 electrochemical reduction on model platinum single crystal electrodes Pt(hkl) is studied in [C2mim+][NTf2−], a suitable room temperature ionic liquid (RTIL) medium due to its moderate viscosity, high CO2 solubility and conductivity. Single crystal electrodes represent the most convenient type of surface structured electrodes for studying the impact of RTIL ion adsorption on relevant electrocatalytic reactions, such as surface sensitive electrochemical CO2 reduction. We propose here based on cyclic voltammetry and in situ electrolysis measurements, for the first time, the formation of a stable adduct [C2mimH–CO2−] by a radical–radical coupling after the simultaneous reduction of CO2 and [C2mim+]. It means between the CO2 radical anion and the radical formed from the reduction of the cation [C2mim+] before forming the corresponding electrogenerated carbene. This is confirmed by the voltammetric study of a model imidazolium-2-carboxylate compound formed following the carbene pathway. The formation of that stable adduct [C2mimH–CO2−] blocks CO2 reduction after a single electron transfer and inhibits CO2 and imidazolium dimerization reactions. However, the electrochemical reduction of CO2 under those conditions provokes the electrochemical cathodic degradation of the imidazolium based RTIL. This important limitation in CO2 recycling by direct electrochemical reduction is overcome by adding a strong acid, [H+][NTf2−], into solution. Then, protons become preferentially adsorbed on the electrode surface by displacing the imidazolium cations and inhibiting their electrochemical reduction. This fact allows the surface sensitive electro-synthesis of HCOOH from CO2 reduction in [C2mim+][NTf2−], with Pt(110) being the most active electrode studied.
Resumo:
During dry periods in the Mediterranean area, the lack of water entering the soil matrix reduces organic contribu- tions to the soil. These processes lead to reduced soil fertility and soil vegetation recovery which creates a positive feedback process that can lead to desertification. Restoration of native vegetation is the most effective way to regenerate soil health, and control runoff and sediment yield. In Mediterranean areas, after a forestry proposal, it is highly common to register a significant number of losses for the saplings that have been introduced due to the lack of rainfall. When no vegetation is established, organic amendments can be used to rapidly protect the soil surface against the erosive forces of rain and runoff. In this study we investigated the hydrological effects of five soil treatments in relation to the temporal vari- ability of the available water for plants. Five amendments were applied in an experimental set of plots: straw mulching; mulch with chipped branches of Aleppo Pine (Pinus halepensis L.); TerraCotten hydroabsobent polymers; sewage sludge; sheep manure and control. Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha-1. In control plots, during June, July, August and September, soils were registered below the wilting point, and therefore, in the area of water unusable by plants. These months were coinciding with the summer mediter- ranean drought. This fact justifies the high mortality found on plants after the seeding plan. Similarly, soils have never exceeded the field capacity value measured for control plots. Conversely, in the straw and pinus mulch, soils were above the wilting point during a longer time than in control plots. Thus, the soil moisture only has stayed below the 4.2 pF suction in July, July and August. Regarding the amount of water available was also higher, especially in the months of December, January and February. However, the field capacity value measured has not showed any differences regarding the control. For these treatments, the survival sapling rates measured were the highest. Sludge, manure and polymers showed a moisture retention capacity slightly more limited than straw and pinus mulch. Likewise, it has been found that the area of usable water by plants was also lower, especially during the months of January and February. This situation is especially sharpened in plots amended with manure. In this treatment, the upper part of the soil profile was below the wilting point for six months a year (from April to August). For this treatment, the survival sapling rates measured were the lowest. In conclusion, from a land management standpoint, the pinus and straw mulch treatments have been shown as effective methods reducing water stress for plants. In this research, mulching has been proved as a significant method to reduce the mortality sapling rates during the mediterranean summer drought.
Resumo:
The Raman spectrum of holmquistite, a Li-containing orthorhombic amphibole from Bessemer City, USA has been measured. The OH-stretching region is characterized by bands at 3661, 3646, 3634 and 3614 cm–1 assigned to 3 Mg–OH, 2 Mg + Fe2+–OH, Mg + 2Fe2+–OH and 3 Fe2+–OH, respectively. These Mg and Fe2+ cations are located at the M1 and M3 sites and have a Fe2+/(Fe2+ + Mg) ratio of 0.35. The 960–1110 cm–1 region represents the antisymmetric Si–O–Si and O–Si–O stretching vibrations. For holmquistite, strong bands are observed around 1022 and 1085 cm–1 with a shoulder at 1127 cm–1 and minor bands at 1045 and 1102 cm–1. In the region 650–800 cm–1 bands are observed at 679, 753 and 791 cm–1 with a minor band around 694 cm–1 attributed to the symmetrical Si–O–Si and Si–O vibrations. The region below 625 cm–1 is characterized by 14 vibrations related to the deformation modes of the silicate double chain and vibrations involving Mg, Fe, Al and Li in the various M sites. The 502 cm–1 band is a Li–O deformation mode while the 456, 551 and 565 cm–1 bands are Al–O deformation modes.
Resumo:
A series of selected autunites with phosphate as the anion have been studied using infrared spectroscopy. Each autunite mineral has its own characteristic spectrum. The spectra for different autunites with the same composition are different. It is proposed that this difference is due to the structure of water and hydrated cations in the interlayer region between the uranyl phosphate sheets. This structure is different for different autunites. The position of the water hydroxyl stretching bands is related to the strength of the hydrogen bonds as determined by hydrogen bond distance. The highly ordered structure of water is also observed in the water HOH bending modes where a high wavenumber bands are observed. The phosphate and uranyl stretching vibrations overlap and are obtained by curve resolution.