987 resultados para ACTIVATED RESTORATIVE MATERIALS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is the sixth paper that I have published involving thermography. In this research we were using thermogrphy to measure the temperature increases generated during photocuring of a range of clinical materials. The materials investigated were all commonly used products. The work also investigated the insulation potential of various thicknesses of human dentine when placed between the curing materials and the thermal imaging camera. From a clinical perspective this work may be used to influence the methods used to place restorative dental materials

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work activated dolomite adsorption was investigated for removal of acidic gaseous pollutants. Charring was found to be an effective method for the activation of dolomite. This thermal processing resulted in partial decomposition, yielding a calcite and magnesium oxide structure. Adsorbents were produced over a range of char temperatures (750, 800 and 850 °C) and char times (1–8 h). The surface properties and the adsorption capability of raw and thermally treated dolomite sorbents were investigated using porosimetry, SEM and XRD. The sorbates individually investigated were CO2 and NO2. Volumetric equilibrium isotherm determinations were produced in order to quantify sorbate capacity on the various sorbents. The equilibrium data were successfully described using the Freundlich isotherm model. Despite relatively low surface area characteristics of the activated dolomite, there was a high capacity for the acidic gas sorbates investigated, showing a maximum of 12.6 mmol/g (554 mg/g) for CO2 adsorption and 9.93 mmol/g (457 mg/g) for NO2 adsorption. Potentially the most cost effective result from the work concerns the adsorptive capacity for the naturally occurring material, which gave a capacity of 9.71 mmol/g (427 mg/g) for CO2 adsorption and 4.18 mmol/g (193 mg/g) for NO2 adsorption. These results indicate that dolomitic sorbents are potentially cost effective materials for acidic gases adsorption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: Adsorption behaviour of reactive dyes in fixed-bed adsorber was evaluated in this work. The characteristics of mass transfer zone (MTZ), where adsorption in column occurs, were affected by carbon bed depth and influent dye concentration. The working lifetime (t(x)) of MTZ, the height of mass transfer zone (HMTZ), the rate of mass transfer zone (RMTZ), and the column capacity at exhaustion (q(column)) were estimated for the removal of remazol reactive yellow and remazol reactive black by carbon adsorber. The results showed that column capacity calculated at 90% of column exhaustion was lower than carbon capacity obtained from equilibrium studies. This indicated that the capacity of activated carbon was not fully utilized in the fixed-bed adsorber. The bed-depth service time model (BDST) was applied for analysis of reactive yellow adsorption in the column. The adsorption capacity of reactive yellow calculated at 50% breakthrough point (No) was found to be 0.1 kg kg(-1) and this value is equivalent to about 14% of the available carbon capacity. The results of this study indicated the applicability of fixed-bed adsorber for removing remazol reactive yellow from solution. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The central theme of this investigation is to evaluate the feasibility of using bituminous coal as a precursor material for the production of chars and activated carbons using physical and chemical activation processes. The chemical activation process was accomplished by impregnating the raw materials with different dehydrating agents in different ratios and concentrations, prior to heat treatment (ZnCl2, KCl, KOH, NaOH and Fe2(SO4)3·xH2O). Steam activation of the precursor material was adopted for the preparation of activated carbon using physical activation technology. Different types of bituminous coal; namely, contaminated Columbian (contaminated with pet. coke), pure Columbian, Venezuelan and New Zealand bituminous coal were used in the production processes. BET surface area, micropore area, pore size distribution and total pore volume of the chars and activated carbons were determined from N2 adsorption/desorption isotherm, measured at 77 K. Charring conditions, charring temperature of 800 °C and charring time of 4 h, proved to be the optimum conditions for preparing chars. Contaminated Columbian were found to be the best precursor material for the production of char with reasonable physical characteristics (surface area = 138.1 m2 g-1 and total pore volume of 8.656 × 10-0.2 cm3 g-1). An improvement in the physical characteristics of the activated carbons was obtained upon the treatment of coal with dehydrating agents. Contaminated Columbian treated with 10 wt% ZnCl2 displayed the highest surface area and total pore volume (surface area = 231.5 m2 g-1 and total pore volume = 0.1227 cm3 g-1) with well-developed microporisity (micropore area = 92.3 m2 g-1). Venezuelan bituminous coal using the steam activation process was successful in producing activated carbon with superior physical characteristics (surface area = 863.50 m2 g-1, total pore volume = 0.469 cm3 g-1 and micropore surface area = 783.58 m2 g-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrochemical capacitors, also known as supercapacitors, are becoming increasingly important components in energy storage, although their widespread use has not been attained due to a high cost/ performance ratio. Fundamental research is contributing to lowered costs through the engineering of new materials. Currently the most viable materials used in electrochemical capacitors are biomassderived and polymer-derived activated carbons, although other carbon materials are useful research tools. Metal oxides could result in a step change for electrochemical capacitor technology and is an exciting area of research. The selection of an appropriate electrolyte and electrode structure is fundamental in determining device performance. Although there are still many uncertainties in understanding the underlying mechanisms involved in electrochemical capacitors, genuine progress continues to be made. It is argued that a large, collaborative international research programme is necessary to fully develop the potential of electrochemical capacitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of ionic liquid (IL) electrolytes promises to improve the energy density of electrochemical capacitors (ECs) by allowing for operation at higher voltages. Several studies have also shown that the pore size distribution of materials used to produce electrodes is an important factor in determining EC performance. In this research the capacitative, energy and power performance of ILs 1-ethyl-3- methylimidazolium tetrafluoroborate (EMImBF4), 1-ethyl-3-methylimidazolium dicyanamide (EMImN(CN)2), 1,2-dimethyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide (DMPImTFSI), and 1-butyl-3-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate (BMPyT(F5Et)PF3) were studied and compared with the commercially utilised organic electrolyte 1M tetraethylammonium tetrafluoroborate solution in anhydrous propylene carbonate (Et4NBF4–PC 1 M). To assess the effect of pore size on IL performance, controlled porosity carbons were produced from phenolic resins activated in CO2. The carbon samples were characterised by nitrogen adsorption– desorption at 77 K and the relevant electrochemical behaviour was characterised by cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy. The best capacitance performance was obtained for the activated carbon xerogel with average pore diameter 3.5 nm, whereas the optimum rate performance was obtained for the activated carbon xerogel with average pore diameter 6 nm. When combined in an EC with IL electrolyte EMImBF4 a specific capacitance of 210 F g1 was obtained for activated carbon sample with average pore diameter 3.5 nm at an operating voltage of 3 V. The activated carbon sample with average pore diameter 6 nm allowed for maximum capacitance retention of approximately 70% at 64 mA cm2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the feasibility of using H3PO4-activated lignin for hexavalent chromium adsorption has been investigated. The composite of activated lignin was characterized using FTIR, XRD and SEM with EDAX analysis. It was observed that the pH had a strong effect on the adsorption capacity; adsorption of Cr(VI) was more favorable at acidic pH with maximum uptake at pH 2. The adsorption equilibrium data were best represented by Koble-Corrigan isotherm. The monolayer sorption capacity obtained from the Langmuir model was found to be 77.85 mg/g. Adsorption showed pseudo-second order rate kinetics and the process involving the rate-controlling step is complex as it involves both film and intraparticle diffusion processes. The NaOH desorbing agent was able to release approximately 84% of metal ions. Thermodynamic parameters showed that the sorption process is exothermic and non-spontaneous. The overall Cr(VI) retention on the activated lignin surface perhaps includes both the physical adsorption of Cr(VI) and the consequent reduction of Cr(VI) to Cr(III). (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple UV-activated, TiO2-based film or ink for removing thin oxide or sulfide layers from metal surfaces by reductive photocatalysis is described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocrystalline SnO2, ncSnO(2), is used as a photosensitiser in a colourimetric O-2 indicator that comprises a sacrificial electron donor, glycerol, a redox dye, methylene blue (MB), and an encapsulating polymer, hydroxyethyl cellulose (HEC). Upon exposure to a burst of UVB light the indicator is activated (photo-bleached) as the MB is photoreduced by the ncSnO(2) particles. In the absence of oxygen, the film stays bleached, but recovers its original colour upon exposure to oxygen. Unlike its TiO2-based predecessor, the HEC/glycerol/MB/ncSnO(2) O-2 indicator is not activated by UVA light from white fluorescent lamps, but is by UVB light. This feature provides much greater control in the activation of the indicator. Other work shows the rate of activation depends upon I-0.75, where I is the UVB irradiance, indicating a partial dependence upon the electron-hole recombination process. The half-life of the recovery of the original colour of a UV-activated film, t(50), is directly proportional to the ambient level of oxygen. The advantages of using this indicator in modified atmosphere packaging as a possible quality assurance indicator are discussed briefly. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results of a detailed characterization study of a novel UV-activated colorimetric oxygen indicator are described. The indicator uses nanoparticles of titania to photosensitize the reduction of methylene blue by triethanolamine in a polymer encapsulation medium, using UVA light. Upon UV irradiation, the indicator bleaches and remains in this colorless state in the dark, unless and until it is exposed to oxygen, whereupon its original color is restored. The indicator is reusable and irreversible. The rate of color recovery is proportional to the level of oxygen present. A layer of PET (poly(ethylene terephthalate)), of thickness b, placed on top of the indicator film slows down its response, and the 90% recovery time is proportional to b.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption of 4-chlorophenol (4-CP) on activated carbon was studied experimentally both in the presence and in the absence of an inactivated anaerobic biofilm on the surface of carbon pellets. The presence of the biofilm markedly decreased the rate of 4-CP adsorption. However, the final near-equilibrium state (at 27 h) was not affected, and the incremental amount of material adsorbed on the pellets was similar both in the presence and in the absence of the biofilm. The biosorption of 4-CP by a biofilm coating non-adsorbing pellets was also determined. It appears that the biofilm also has some adsorption capability. Freundlich-type equations were used to correlate all data, and transient and near-equilibrium isotherms were obtained for 4-CP adsorption on different adsorbing materials at different times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemical and mechanical stability of slag activated with two different concentrations of sodium sulfate (Na2SO4) after exposure to elevated temperatures ranging from 200 to 800 °C with an increment of 200 °C has been examined. Compressive strengths and pH of the hardened pastes before and after the exposure were determined. The various decomposition phases formed were identified using X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The results indicated that Na2SO4 activated slag has a better resistance to the degradation caused by exposure to elevated temperature up to 600 °C than Portland cement system as its relative strengths are superior. The finer slag and higher Na2SOconcentration gave better temperature resistance. Whilst the pH of the hardened pastes decreased with an increase in temperature, it still maintained a sufficiently high pH for the protection of reinforcing bar against corrosion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanochemical transduction enables an extraordinary range of physiological processes such as the sense of touch, hearing, balance, muscle contraction, and the growth and remodelling of tissue and
bone1–6. Although biology is replete with materials systems that actively and functionally respond to mechanical stimuli, the default mechanochemical reaction of bulk polymers to large external stress is the unselective scission of covalent bonds, resulting in damage or failure7. An alternative to this degradation process is the rational molecular design of synthetic materials such that mechanical stress
favourably altersmaterial properties. A few mechanosensitive polymers with this property have been developed8–14; but their active response is mediated through non-covalent processes, which may
limit the extent to which properties can be modified and the longterm stability in structural materials. Previously, we have shown with dissolved polymer strands incorporating mechanically sensitive chemical groups—so-called mechanophores—that the directional nature of mechanical forces can selectively break and re-form covalent bonds15,16. We now demonstrate that such forceinduced covalent-bond activation can also be realized with mechanophore-linked elastomeric and glassy polymers, by using a mechanophore that changes colour as it undergoes a reversible electrocyclic ring-opening reaction under tensile stress and thus allows us to directly and locally visualize the mechanochemical reaction. We find that pronounced changes in colour and fluorescence emerge with the accumulation of plastic deformation, indicating that in these polymeric materials the transduction of mechanical force into the ring-opening reaction is an activated process. We anticipate that force activation of covalent bonds can serve as a general strategy for the development of new mechanophore building blocks that impart polymeric materials with desirable functionalities ranging from damage sensing to fully regenerative self-healing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to examine the estrogen and androgen hormone removal efficiency of reactive (Connelly zero-valent iron (ZVI), Gotthart Maier ZVI) and sorptive (AquaSorb 101 granular activated carbon (GAC) and OrganoLoc PM-100 organo clay (OC)) materials from HPLC grade water and constructed wetland system (CWS) treated dairy farm wastewater. Batch test studies were performed and hormone concentration analysis carried out using highly sensitive reporter gene assays (RGAs). The results showed that hormonal interaction with these materials is selective for individual classes of hormones. Connelly ZVI and AquaSorb 101 GAC were more efficient in removing testosterone (Te) than 17?-estradiol (E2) and showed faster removal rates of estrogen and androgen than the other materials. Gotthart Maier ZVI was more efficient in removing E2 than Te. OrganoLoc PM-100 OC achieved the lowest final concentration of E2 equivalent (EEQ) and provided maximum removal of both estrogens and androgens.