466 resultados para A. Polyaniline (PANI)
Resumo:
The interaction between polyaniline (PAn) and 2,5-dimercapto-1,3,4-thiadiazole (DMcT) was investigated by means of cyclic voltammetry and UV-visible spectroscopy. The results show that the polymerization-depolymerization reaction of DMcT or its dilithium salt Li(2)DMcT is a kinetically quasi-reversible process. PAn exhibits very weak electrochemical activity in neutral propylene carbonate. After doping with protonic acid, such as hydrochloric acid or maleic acid etc., however, it shows an extensively enhanced electroactivity. For the complex system, PAn-DMcT or PAn-Li(2)DMcT, polyaniline has no catalytic activity for the electrochemical polymerization-depolymerization reaction of DMcT or DMcT(2-). Instead, the enhancement of the electrochemical redox activity of PAn-DMcT system compared with that of PAn, DMcT, Li(2)DMcT, and PAn-Li(2)DMcT comes from the protonic doping of PAn by DMcT.
Resumo:
Conducting polyaniline-poly(ethylene oxide) blends were prepared from their aqueous solutions. The blends displayed an electrical conductivity percolation threshold as low as 1.83 wt % of polyaniline loading. As demonstrated by scanning electron microscopy, polarized optical microscopy, and wide-angle X-ray diffraction studies, the conducting polyaniline took a fibrillar morphology in the blend, and it existed only in the amorphous phase of poly(ethylene oxide). A three-phase model combining morphological factors instead of a two-phase model was proposed to explain the low-conductivity percolation threshold.
Resumo:
Communication: Conducting semi-interpenetrating network composites with low conductivity percolation threshold were synthesized from waterborne conducting polyaniline (cPAn) and melamine-urea resin, A perfect network of cPAn in the composite was observed by means of TEM (see Figure). The conductivity stability of cPAn in water was improved by confining the chain mobility of cPAn via in-situ crosslinking of melamine-urea resin. Cyclic voltammetry of the composites reveals electrochemical activities and reversibilities similarly to those of pure cPAn.
Resumo:
Monodispersed polyaniline oligomers was studied by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS), It is found that MALDI-TOF-MS is not only a direct, accurate and rapid tool for the analysis of monodispersed polyaniline oligomers, but also a useful technique for the design of synthetic route.
Resumo:
A versatile process employing anionic surfactants has been developed for the preparation of processible nanocomposite films with electrical conductivity and magnetic susceptibility. Maghemite (g-Fe2O3) nanoclusters (similar to 10 nm in size) are coated with 4-dodecyl- benzenesulfonic acid, and polyaniline (PAn) chains are doped with 10-camphorsulfonic acid. The coated nanoclusters and doped polymers are soluble in common solvents, and casting the solutions readily gives free-standing nanocomposite films with nanocluster contents as high as similar to 50 wt %. The g-Fe2O3/PAn nanocomposites show high conductivity (82-337 S cm(-1)) and magnetizability (up to similar to 35 emu/g g-Fe2O3).
Resumo:
We reported on the multilayer architecture containing diazo-resins (DAR) as polycations and polyaniline poly(aniline-co-N-propanesulfonic acid aniline) (PAPSAH) as polyanions held together by electrostatic interaction. Upon UV irradiation, the adjacent interfaces of the multilayer reacted to form a covalently crosslinking structure which greatly improved the stability of the films as confirmed by solvent etching experiments. These changes were confirmed by UV-Vis and FTIR spectroscopy. The thickness of the covalently attached films were characterized with small angle X-ray diffraction (SAXD) and a value of 30.0 Angstrom per bilayer was obtained. This type of film was further characterized by cyclic voltammetry which showed that the electroactive property of PAPSAH was still kept in the films after photoreaction. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Electrochemical polymerized polyaniline(PAn) film electrode was used to investigate the electrocatalytic effect of PAn on the electrochemical redox reaction of 2,5-dimercapto-1,3,4-thiadiazole (DMcT), PAn film electrode was electrochemically treated or immersed in DMcT solution before it was scanned in 1.0 mol/L HCl electrolyte. The cyclic voltammograms of PAn film electrode in 1.0 mol/L HCl solution changed with the above treatment, implying the electrocatalytic effect of PAn on the redox reaction of DMcT, The formation of electron-donor-acceptor adducts through the interaction between thiol or disulfide groups of DMcT and amine or imine groups of PAn during the treatment was probably the reason of the catalysis, The electrochemical properties of the adduct were different from those of PAn and DMcT, The adduct possessed a higher electrochemical activity and a better electrochemical reversibility than DMcT or PAn used alone.
Resumo:
Polyaniline nanoparticles were prepared on a highly oriented pyrolytic graphite (HOPG) surface from dilute polyaniline acidic solution (1 mM aniline + 1 M HClO4) using a pulsed potentiostatic method. Electrochemistry, Fourier transform infrared external reflection spectroscopy (FT-IR-ERS), X-ray photoelectron spectroscopy (XPS) and tapping-mode atomic force microscopy (TMAFM) were: used to characterize the composition and structure of the polyaniline nanoparticles. FT-IR-ERS and XPS results revealed that the polyaniline was in its emeraldine form. TMAFM measurement showed that the electropolymerized polyaniline nanoparticles dispersed on the:HOPG surface with a coverage of about 10(10) cm(-2). These nanoparticles were disk-shaped having a height of 10(-30) Angstrom and an apparent diameter varying from 200 to 600 Angstrom. The particle dimensions increased with the electropolymerization charge (Q) over the interval from 5.7 to 19.3 mu C cm(-2) (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
A novel conducting polymer poly(phenylene sulfide-tetraaniline) (PPSTEA), with tetraaniline (TA) and phenylene sulfide (PS) segments in its repeat unit, has been synthesized through an acid-induced polycondensation reaction of 4-methylsulfinylphenyl-capped tetraaniline. The new polymer, which represents the first soluble conducting polyaniline analogue with well-defined structure, has high molecular weight, good solubility in common solvents, and good film-forming properties. Its electrical property is analogous to polyaniline. The conductivity of preliminarily, protonic-doping PPSTEA is up to 10 degrees S/cm. This synthetic strategy appears to be general for developing novel well-defined polyaniline analogue containing much longer fixed conjugation length.
Resumo:
A hybrid material with a conductive organic network in an inorganic matrix has been prepared by in-situ hydrolysis/polycondensation of TEOS in an aqueous solution of a solubilized polyaniline. Due to intense hydrogen bonding (indicated by Si-29 NMR and FTIR) the conductive polymer is very well dispersed in the silica matrix. The Figure shows SEM images of a 46/54 wt.-% hybrid at two temperatures (left 20 degreesC, right 100 degreesC).
Resumo:
Stable monolayer of the polyaniline(PAn) doped with dodecyl benzenesulfonic acid(DBSA) can form on the pure water surface. The multilayer ultrathin film can be successfully deposited by Langmuir-Blodgett(LB) technique onto CaF2 substrate. The limiting mean molecular area and collapse pressure observed are 0.066 nm(2) and 35 mN m(-1), respectively. The multilayer LB film and casting film were all characterized by TR and UV-Vis-NIR spectroscopies.
Resumo:
Organomonothiols were used to control the extent of 2,5-dimercapto-1,3,4-thiadiazole polymerization. When organomonothiols were incorporated into polyaniline/2,5-dimercapto-1,3, 4-thiadiazole composite cathode materials for lithium batteries, their electrochemical reversibility and charge-discharge capacities were improved significantly. (C) 1999 The Electrochemical Society. S0013-4651(99)01-078-2. All rights reserved.
Resumo:
Stable monolayer of the polyaniline doped with camphor sulfonic acid at the air-water interface has been obtained, of which multilayers have been successfully deposited by Langmuir-Blodgett technique onto CaF2 substrate. The limiting mean molecular area and collapse pressure are found to be 0.294 nm(2) and 41 mN/m, respectively. The multilayers were characterized by IR and W-Vis-NIR spectroscopies. X-ray small-angle diffraction data show that the multilayer was periodic layer structure with the layer spacing of 1.60 nm. The comparisons are also made with characterization of the casting film. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Conductive fibers were obtained by blending polyaniline with poly-omega-aminoundecanoyle in-concentrated H2SO4 Micro-fiber caused by non-compatibility between the two polymers was valuable for improving conductive property of the fibers. Abnormal effect on the crystallinity of polyaniline and poly-omega-aminoundecanoyle upon drawing stress was observed.
Resumo:
A convenient way to make water-soluble or water-dispersible conducting polyaniline was given by employing protonic acid dopants containing hydrophilic ethyleneoxide oligomer as counter-anion. The conducting polyaniline possessed electrical conductivity in the range of 10(-3) to 10(-2) S/cm, depending on the dopant, and it displayed excellent electrochemical redox reversibility in non-aqueous system.