986 resultados para 8-OH-DPAT
Resumo:
Many minerals based upon antimonite and antimonate anions remain to be studied. Most of the bands occur in the low wavenumber region, making infrared spectroscopy difficult to use. This problem can be overcome by using Raman spectroscopy. Raman spectra of the mineral klebelsbergite Sb4O4(OH)2(SO4) were studied, and related to the structure of the mineral. Raman bands observed at 971 cm-1 and a series of overlapping bands are observed at 1029, 1074, 1089, 1139 and 1142 cm-1 are assigned to the SO42- ν1 symmetric and ν3 antisymmetric stretching modes. Two Raman bands are observed at 662 and 723 cm-1 and assigned to the SbO ν3 antisymmetric and ν1 symmetric stretching modes. The intense Raman bands at 581, 604 and 611 cm-1 are assigned to the ν4 SO42- bending modes. Two overlapping bands at 481 and 489 cm-1 are assigned to the ν2 SO42- bending mode. Low intensity bands at 410, 435 and 446 cm-1 may be attributed to OSbO bending modes. The Raman band at 3435 cm-1 is attributed to the OH stretching vibration of the OH units. Multiple Raman bands for both SO42- and SbO stretching vibrations support the concept of the non-equivalence of these units in the klebelsbergite structure. It is proposed that two sulphate anions are distorted to different extents in the klebelsbergite structure.
Resumo:
Raman spectroscopy has enabled insights into the molecular structure of the richelsdorfite Ca2Cu5Sb[Cl|(OH)6|(AsO4)4]·6H2O. This mineral is based upon the incorporation of arsenate or phosphate with chloride anion into the structure and as a consequence the spectra reflect the bands attributable to these anions, namely arsenate or phosphate and chloride. The richelsdorfite Raman spectrum reflects the spectrum of the arsenate anion and consists of ν1 at 849, ν2 at 344 cm−1, ν3 at 835 and ν4 at 546 and 498 cm−1. A band at 268 cm−1 is attributed to CuO stretching vibration. Low wavenumber bands at 185 and 144 cm−1 may be assigned to CuCl TO/LO optic vibrations.
Resumo:
The mineral nesquehonite Mg(OH)(HCO3)•2H2O has been analysed by a combination of infrared (IR) and infrared emission spectroscopy (IES). Both techniques show OH vibrations, both stretching and deformation modes. IES proves the OH units are stable up to 450°C. The strong IR band at 934 cm-1 is evidence for MgOH deformation modes supporting the concept of HCO3- units in the molecular structure. Infrared bands at 1027, 1052 and 1098 cm-1 are attributed to the symmetric stretching modes of HCO3- and CO32- units. Infrared bands at 1419, 1439, 1511, and 1528 cm-1 are assigned to the antisymmetric stretching modes of CO32- and HCO3- units. IES supported by thermoanalytical results defines the thermal stability of nesquehonite IES defines the changes in the molecular structure of nesquehonite with temperature. The results of IR and IES supports the concept that the formula of nesquehonite is better defined as Mg(OH)(HCO3)•2H2O.
Resumo:
The mineral delvauxite CaFe3+4(PO4,SO4)2(OH)8•4-6H2O has been characterised by Raman spectroscopy and infrared spectroscopy. The mineral is associated with the minerals diadochite and destinezite. Delvauxite appears to vary in crystallinity from amorphous to semi-crystalline. The mineral is often X-ray non-diffracting. The minerals are found in soils and may be described as ‘colloidal’ minerals. Vibrational spectroscopy enables determination of the molecular structure of delvauxite. Bands are assigned to phosphate and sulphate stretching and bending modes. Two symmetric stretching modes for both the phosphate and sulphate symmetric stretching modes support the concept of non-equivalent phosphate and sulphate units in the mineral structure. Multiple water bending and stretching modes imply that non-equivalent water molecules in the structure exist with different hydrogen bond strengths.
Resumo:
This paper presents the results of testing to determine pavement forces from three heavy vehicles (HVs). The HVs were instrumented to measure their wheel forces. A “novel roughness” value of the roads during testing is also derived. The various dynamic pavement forces are presented according to the range of novel roughness of pavement surfacings encountered during testing. The paper then examines the relationship between the two derived wavelengths predominant within the HV suspensions; those of axle hop and body-bounce. How these may be considered as contributing to spatial repetition of pavement forces from HVs is discussed. The paper concludes that pavement models need to be revised since dynamic forces from HVs in particular are not generally considered in current pavement design.
Resumo:
The mixed valency (M2+M3+) sulphate minerals, römerite Fe2+Fe23+(SO4)4•14H2O and botryogen Mg2+Fe3+(SO4)2(OH).7H2O have been studied by Raman spectroscopy. The Raman spectra of the two types of crystals proved very similar but not identical. The observation of two symmetric stretching modes confirmed the presence of the two non-equivalent sulphate units in the römerite structure. The observation of multiple bands in the antisymmetric stretching region and in the bending regions proves the symmetry of the sulphate anion is significantly reduced in the römerite structure. The number of Raman bands related to the (SO4)2- symmetric and antisymmetric vibrations support the X-ray single crystal structure conclusion that two symmetrically distinct S6+ are present in the structure of botryogen. Römerite is a mineral of environmental significance as it is commonly found in tailings and dumps.
Resumo:
Raman spectroscopy has been used to study selected mineral samples of the copiapite group. Copiapite (Fe2+Fe3+(SO4)6(OH)2 · 20H2O) is a secondary mineral formed through the oxidn. of pyrite. Minerals of the copiapite group have the general formula AFe4(SO4)6(OH)2 · 20H2O, where A has a + 2 charge and can be either magnesium, iron, copper, calcium and/or zinc. The formula can also be B2/3Fe4(SO4)6(OH)2 · 20H2O, where B has a + 3 charge and may be either aluminum or iron. For each mineral, two Raman bands are obsd. at around 992 and 1029 cm-1, assigned to the (SO4)2-ν1 sym. stretching mode. The observation of two bands provides evidence for the existence of two non-equiv. sulfate anions in the mineral structure. Three Raman bands at 1112, 1142 and 1161 cm-1 are obsd. in the Raman spectrum of copiapites, indicating a redn. of symmetry of the sulfate anion in the copiapite structure. This redn. in symmetry is supported by multiple bands in the ν2 and ν4(SO4)2- spectral regions.
Resumo:
The single crystal Raman spectra of minerals brandholzite and bottinoite, formula M[Sb(OH)6]2•6H2O, where M is Mg+2 and Ni+2 respectively, and the non-aligned Raman spectrum of mopungite, formula Na[Sb(OH)6], are presented for the first time. The mixed metal minerals comprise of alternating layers of [Sb(OH)6]-1 octahedra and mixed [M(H2O)6]+2 / [Sb(OH)6]-1 octahedra. Mopungite comprises hydrogen bonded layers of [Sb(OH)6]-1 octahedra linked within the layer by Na+ ions. The spectra of the three minerals were dominated by the Sb-O symmetric stretch of the [Sb(OH)6]-1 octahedron, which occurs at approximately 620 cm-1. The Raman spectrum of mopungite showed many similarities to spectra of the di-octahedral minerals informing the view that the Sb octahedra gave rise to most of the Raman bands observed, particularly below 1200 cm-1. Assignments have been proposed based on the spectral comparison between the minerals, prior literature and density field theory calculations of the vibrational spectra of the free [Sb(OH)6]-1 and [M(H2O)6]+2 octahedra by a model chemistry of B3LYP/6-31G(d) and lanl2dz for the Sb atom. The single crystal data spectra showed good mode separation, allowing the majority of the bands to be assigned a symmetry species of A or E.
Resumo:
We have successfully synthesized hydrotalcites (HTs) contg. calcium, which are naturally occurring minerals. Insight into the unique structure of HTs has been obtained using a combination of X-ray diffraction (XRD) as well as IR and Raman spectroscopies. Calcium-contg. hydrotalcites (Ca-HTs) of the formula Ca4Al2(CO3)(OH)12·4H2O (2:1 Ca-HT) to Ca8Al2(CO3)(OH)20· 4H2O (4:1 Ca-HT) have been successfully synthesized and characterised by XRD and Raman spectroscopy. XRD has shown that 3:1 calcium HTs have the largest interlayer distance. Raman spectroscopy complemented with selected IR data has been used to characterize the synthesized Ca-HTs. The Raman bands obsd. at around 1086 and 1077 cm-1 were attributed to the ν1 sym. stretching modes of the (CO32-) units of calcite and carbonate intercalated into the HT interlayer. The corresponding ν3 CO32- antisym. stretching modes are found at around 1410 and 1475 cm-1.
Resumo:
Raman spectroscopy complimented with infrared spectroscopy has been used to characterise the antimonate mineral bindheimite Pb2Sb2O6(O,OH). The mineral is characterised by an intense Raman band at 656 cm-1 assigned to SbO stretching vibrations. Other lower intensity bands at 664, 749 and 814 cm-1 are also assigned to stretching vibrations. This observation suggests the non-equivalence of SbO units in the structure. Low intensity Raman bands at 293, 312 and 328 cm-1 are assigned to the OSbO bending vibrations. Infrared bands at 979, 1008, 1037 and 1058 cm-1 may be assigned to δ OH deformation modes of SbOH units. Infrared bands at 1603 and 1640 cm-1 are assigned to water bending vibrations, suggesting that water is involved in the bindheimite structure. Broad infrared bands centred upon 3250 cm-1 supports this concept. Thus the true formula of bindheimite is questioned and probably should be written as Pb2Sb2O6(O,OH,H2O)
Resumo:
Thermogravimetry combined with evolved gas mass spectrometry has been used to ascertain the stability of the soil minerals destinezite and diadochite. These two minerals are identical except for their morphology. Diadochite is amorphous whereas destinezite is crystalline. Both minerals are found in soils. It is important to understand the stability of these minerals because soils are subject to bush fires especially in Australia. The thermal analysis patterns of the two minerals are similar but not identical. Subtle differences are observed in the DTG patterns. For destinezite, two DTG peaks are observed at 129 and 182°C attributed to the loss of hydration water, whereas only a broad peak with maximum at 84°C is observed for diadochite. Higher temperature mass losses at 685°C for destinezite and 655°C for diadochite, based upon the ion current curves, are due to sulphate decomposition. This research has shown that at low temperatures the minerals are stable but at high temperatures, as might be experienced in a bush fire, the minerals decompose.
Resumo:
Raman spectra of the uranyl containing mineral coconinoite, Fe2Al2(UO2)2(PO4)4(SO4)(OH)2•20H2O, are presented and compared with the mineral’s infrared spectra. Bands connected with (UO2)2+, (PO4)3- , (SO4)2-, (OH)- and H2O stretching and bending vibrations, are assigned. Approximate U-O bond lengths in uranyl, (UO2)2+, and O-H...O hydrogen bond lengths are calculated from the wavenumbers of the U-O stretching vibrations and (OH)- and H2O stretching vibrations, respectively, and compared with published data for similar natural and synthetic compounds.
Resumo:
The mineral tsumebite Pb2Cu(PO4)(SO4)(OH), a copper phosphate-sulfate hydroxide of the brackebuschite group has been characterised by Raman and infrared spectroscopy. The brackebuschite mineral group are a series of monoclinic arsenates, phosphates and vanadates of the general formula A2B(XO4)(OH,H2O), where A may be Ba, Ca, Pb, Sr, while B may be Al, Cu2+,Fe2+, Fe3+, Mn2+, Mn3+, Zn and XO4 may be AsO4, PO4, SO4,VO4. Bands are assigned to the stretching and bending modes of PO43- and HOPO3 units. Hydrogen bond distances are calculated based upon the position of the OH stretching vibrations and range from 2.759 Å to 3.205 Å. This range of hydrogen bonding contributes to the stability of the mineral.
Resumo:
The mineral sanjuanite Al2(PO4)(SO4)(OH)•9H2O has been characterised by Raman spectroscopy complimented by infrared spectroscopy. The mineral is characterised by an intense Raman band at 984 cm-1, assigned to the (PO4)3- ν1 symmetric stretching mode. A shoulder band at 1037 cm-1 is attributed to the (SO4)2- ν1 symmetric stretching mode. Two Raman bands observed at 1102 and 1148 cm-1 are assigned to (PO4)3- and (SO4)2- ν3 antisymmetric stretching modes. Multiple bands provide evidence for the reduction in symmetry of both anions. This concept is supported by the multiple sulphate and phosphate bending modes. Raman spectroscopy shows that there are more than one non-equivalent water molecules in the sanjuanite structure. There is evidence that structural disorder exists, shown by the complex set of overlapping bands in the Raman and infrared spectra. At least two types of water are identified with different hydrogen bond strengths. The involvement of water in the sanjuanite structure is essential for the mineral stability.
Resumo:
The two minerals diadochite and destinezite of formula Fe2(PO4,SO4)2(OH)•6H2O have been characterised by Raman spectroscopy and complimented with infrared spectroscopy. These two minerals are both found in soils and are identical except for their morphology. Diadochite is amorphous whereas destinezite is highly crystalline. The spectra of diadochite are broad and ill-defined, whereas the spectra of destinezite are intense and well defined. Bands are assigned to phosphate and sulphate stretching and bending modes. Two symmetric stretching modes for both the phosphate and sulphate symmetric stretching modes support the concept of non-equivalent phosphate and sulphate units in the mineral structure. Multiple water bending and stretching modes imply that non-equivalent water molecules in the structure exist with different hydrogen bond strengths.