953 resultados para 770602 Land and water management
Resumo:
Many studies have shown a reduction in P sorption in highly weathered soils when organic matter (OM) is applied, suggesting competition between OM decomposition products and P for sorption sites. However, such studies seldom consider the P released from the added OM. To delineate the effects of OM addition on P availability through sorption competition and P addition, water leachate from incubated soybean (SB) [Glycine mar (L.) Merr.] and Rhodes grass (RG) (Chloris gayana Knuth cv. Callide) was used in competitive P sorption studies both undiluted and after acidification (i.e., the fulvic acid [FA] component). Addition of two rates (0.2 and 2 mL) of SB leachate to an Oxisol significantly increased P sorption at the higher rate, while a similar trend was observed following RG leachate addition at the same rates. Extending the range of highly weathered soils examined (two Oxisols, an Ultisol, and an acidic Vertisol) resulted in no observed decrease in P sorption following addition of OM leachate. Surprisingly, SB leachate transiently increased P sorption in the two Oxisol soils. Addition of the FA component of the leachates resulted in a transient (< 6 d) decrease in P sorption in three of the four soils examined and constituted the only evidence in this study that decomposing OM residues reduced P sorption. This research provides further evidence contradicting the long held assumption that inhibition of P sorption by dissolved organic compounds, derived from decomposing OM, is responsible for increased P phytoavailability when P fertilizer and OM are applied together.
Resumo:
Free surface flow of groundwater in aquifers has been studied since the early 1960s. Previous investigations have been based on the Boussinesq equation, derived from the non-linear kinematic boundary condition. In fact, the Boussinesq equation is the zeroth-order equation in the shallow-water expansion. A key assumption in this expansion is that the mean thickness of the aquifer is small compared with a reference length, normally taken to be the linear decay length. In this study, we re-examine the expansion scheme for free surface groundwater flows, and propose a new expansion wherein the shallow-water assumption is replaced by a steepness assumption. A comparison with experimental data shows that the new model provides a better prediction of water table levels than the conventional shallow-water expansion. The applicable ranges of the two expansions are exhibited. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Phosphorus-availability tests typically provide an indication of quantity of P available (Colwell bicarbonate-extractable P), or of the intensity of supply (0.01 M CaCl2-extractable P). The soil's capacity to buffer P is more difficult to assess, and is generally estimated using a P-adsorption curve. The diffusive gradient in thin films (DGT) approach may provide a simpler means of assessing a soil's ability to maintain soil solution P. Optimal extraction conditions were found to be 24 h exposure of DGT samplers to saturated soil. The DGT approach was evaluated on a range of 24 soils, some of which had high Colwell- (>100 mu g g(-1)) and Bray 1- (>30 mu g g(-1)) extractable P content, but showed a tomato (Lycopersicon esculentum Mill.) yield response to the addition of P fertilizer. The DGT approach provided an excellent separation of soils on which tomato showed a yield response, from those where fertilizer P did not increase dry-matter yield. Phosphorus accumulation was strongly correlated with soil solution P concentration and anion exchange resin-extractable P, but showed poor correlation with Colwell- or Bray 1-extractable P. The DGT P accumulation rate of 3.62 x 10(-7) to 4.79 x 10(-5) mol s(-1) m(-3) for the soils tested was comparable to the uptake rate of roots of tomato plants that were adequately supplied with P (2.25 x 10(-5) mol s(-1) m(-3)).
Resumo:
The acid soils of the uplands of Southeast Asia have resisted intensive agricultural use for centuries. In recent decades, however, due to rapid population growth, escalating market demand for agricultural produce, and govemment policies for land development and settlement, the acid uplands have become the focus of more intensive land-use systems, placing greater demands on farmers and requiring the development and dissemination of improved practices for soil management. In order to develop appropriate soil management technologies and plan effective interventions to facilitate their adoption, it is important to understand the goals and circumstances of farmers in the acid uplands, the range of farming systems they have developed, and the variety of socio-economic factors and trends influencing the evolution of these farming systems. Building on Boserup's model of agrarian change, an evolutionary framework is developed and applied to five case studies: a long-fallow (shifting) cultivation system in Sarawak, Malaysia; a short-fallow system in South Kalimantan, Indonesia; a continuous cropping system in Bukidnon, Philippines; a tree crop (with intercropping) system in Southern Thailand; a livestock grazing system in Daclac, Vietnam. The framework provides a useful tool to interpret and categorise farmers' evolving soil management strategies and to plan more effective soil management research and interventions. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Results from 2 years of dust deposition monitoring in a 10-year-old Pinus nigra plantation near Lake Tekapo are presented. They show that recently established plantations significantly enhance dust deposition rates. This could reverse a cycle of soil loss and enhance vertical accretion of soil, which would provide more options for future land use. However, observations indicate that even under such enhanced conditions for soil formation, it would take several thousand years to replace the soil lost to erosion since European farming practices were first introduced to the northern section of the Mackenzie Basin.
Resumo:
This paper investigates the tidal effects on aeration conditions for plant root respiration in a tidal marsh. We extend the work of Ursino et al. ( 2004) by using a two-phase model for air and water flows in the marsh. Simulations have been conducted to examine directly the link between the airflow dynamics and the aeration condition in the marsh soil. The results show that the effects of entrapped air on water movement in the vadose zone are significant in certain circumstances. Single-phase models based on Richards' equation, which neglect such effects, may not be adequate for quantifying the aeration condition in tidal marsh. The optimal aeration condition, represented by the maximum of the integral magnitude of tidally advected air mass ( TAAM) flux, is found to occur near the tidal creek for the four soil textures simulated. This may explain the observation that some salt marsh plant species grow better near tidal creeks than in the inner marsh areas. Our analyses, based on the two-phase model and predicted TAAM flux magnitude, provide further insight into the positive feedback'' mechanism proposed by Ursino et al. ( 2004). That is, pioneer plants may grow successfully near the creek where the root aeration condition is optimal. The roots of the pioneer plants can soften and loosen the rhizosphere soil, which increases the evapotranspiration rate, the soil porosity, and absolute permeability and weakens the capillary effects. These, in turn, improve further the root aeration conditions and may lead to colonization by plants less resistant to anaerobic conditions.
Resumo:
Many diurnal planktivorous fish in coral reefs efficiently consume zooplankton drifting in the overlying water column. Our survey, carried out at two coral reefs in the Red Sea, showed that most of the diurnal planktivorous fish foraged near the bottom, close to the shelters from piscivores. The planktivorous fish were order of magnitude more abundant near (
Resumo:
Modern stepped spillways are typically designed for large discharge capacities corresponding to a skimming flow regime for which flow resistance is predominantly form drag. The writer demonstrates that the inflow conditions have some effect on the skimming flow properties. Boundary layer calculations show that the flow properties at inception of free-surface aeration are substantially different with pressurized intake. The re-analysis of experimental results highlights that the equivalent Darcy friction factor is f similar to 0.2 in average on uncontrolled stepped Chute and f similar to 0.1 on stepped chute with pressurized intake. A simple design chart is presented to estimate the residual flow velocity, and the agreement of the calculations with experimental results is deemed satisfactory for preliminary design.
Resumo:
Thixotropy is the characteristic of a fluid to form a gelled structure over time when it is not subjected to shearing, and to liquefy when agitated. Thixotropic fluids are commonly used in the construction industry (e.g., liquid concrete and drilling fluids), and related applications include some forms of mud flows and debris flows. This paper describes a basic study of dam break wave with thixotropic fluid. Theoretical considerations were developed based upon a kinematic wave approximation of the Saint-Venant equations down a prismatic sloping channel. A very simple thixotropic model, which predicts the basic theological trends of such fluids, was used. It describes the instantaneous state of fluid structure by a single parameter. The analytical solution of the basic flow motion and theology equations predicts three basic flow regimes depending upon the fluid properties and flow conditions, including the initial degree of jamming of the fluid (related to its time of restructuration at rest). These findings were successfully compared with systematic bentonite suspension experiments. The present work is the first theoretical analysis combining the basic principles of unsteady flow motion with a thixotropic fluid model and systematic laboratory experiments.