1000 resultados para 730118 Organs, diseases and abnormal conditions not elsewhere classified


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an urgent need for high purity, single chain, fully functional Eph/ephrin membrane proteins. This report outlines the pTIg-BOS-Fc vector and purification approach resulting in rapid increased production of fully functional single chain extracellular proteins that were isolated with high purity and used in structure-function analysis and pre-clinical studies.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Transcranial Doppler (TCD) ultrasonography is a technique that uses a hand-held Doppler transducer (placed on the surface of the cranial skin) to measure the velocity and pulsatility of blood flow within the intracranial and the extracranial arteries. This review critically evaluates the evidence for the use of TCD in the critical care population. Discussion: TCD has been frequently employed for the clinical evaluation of cerebral vasospasm following subarachnoid haemorrhage (SAH). To a lesser degree, TCD has also been used to evaluate cerebral autoregulatory capacity, monitor cerebral circulation during cardiopulmonary bypass and carotid endarterectomies and to diagnose brain death. Technological advances such as M mode, colour Doppler and three-dimensional power Doppler ultrasonography have extended the scope of TCD to include other non-critical care applications including assessment of cerebral emboli, functional TCD and the management of sickle cell disease. Conclusions: Despite publications suggesting concordance between TCD velocity measurements and cerebral blood flow there are few randomized controlled studies demonstrating an improved outcome with the use of TCD monitoring in neurocritical care. Newer developments in this technology include venous Doppler, functional Doppler and use of ultrasound contrast agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Erythropoietin (EPO) has been used widely for the treatment of anaemia associated with chronic kidney disease and cancer chemotherapy for nearly 20 years. More recently, EPO has been found to interact with its receptor (EPO-R) expressed in a large variety of non-haematopoietic tissues to induce a range of cytoprotective cellular responses, including mitogenesis, angiogenesis, inhibition of apoptosis and promotion of vascular repair through mobilization of endothelial progenitor cells from the bone marrow. Administration of EPO or its analogue, darbepoetin, promotes impressive renoprotection in experimental ischaemic and toxic acute renal failure, as evidenced by suppressed tubular epithelial apoptosis, enhanced tubular epithelial proliferation and hastened functional recovery. This effect is still apparent when administration is delayed up to 6 h after the onset of injury and can be dissociated from its haematological effects. Based on these highly encouraging results, at least one large randomized controlled trial of EPO therapy in ischaemic acute renal failure is currently underway. Preliminary experimental and clinical evidence also indicates that EPO may be renoprotective in chronic kidney disease. The purpose of the present article is to review the renoprotective benefits of different protocols of EPO therapy in the settings of acute and chronic kidney failure and the potential mechanisms underpinning these renoprotective actions. Gaining further insight into the pleiotropic actions of EPO will hopefully eventuate in much-needed, novel therapeutic strategies for patients with kidney disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The past decade has witnessed a resurgence of interest in the use of hypertonic saline for low-volume resuscitation after trauma. Preliminary studies suggested that benefits are limited to a subgroup of trauma patients with brain injury, but a recent study of prehospital administration of hypertonic saline to patients with traumatic brain injury failed to confirm a benefit. Animal and human studies have demonstrated that hypertonic saline has clinically desirable physiological effects on cerebral blood flow, intracranial pressure, and inflammatory responses in models of neurotrauma. There are few clinical studies in traumatic brain injury with patient survival as an end point. In this review, we examined the experimental and clinical knowledge of hypertonic saline as an osmotherapeutic agent in neurotrauma.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systemic inflammation is known to affect drug disposition in the liver. This study sought to relate and quantitate changes in hepatic pharmacokinetics of propranolol with changes in hepatic architecture and physiology in adjuvant-treated rats. Transmission electron microscopy was used to assess morphological changes in mitochondria and lysosomes of adjuvant-treated rat livers. The disposition of propranolol was assessed in the perfused rat liver using the multiple indicator dilution technique. Hepatic extraction and mean transit time were determined from outflow-concentration profiles using a nonparametric method. Kinetic parameters were derived from a two-phase physiologically based organ pharmacokinetic model. Possible relationships were then explored between the changes in hepatic drug disposition and cytochrome P-450 activity and iron concentration. Adjuvant treatment induced the appearance of mitochondrial inclusions/tubularization and irregularly shaped lysosomes in rat livers. Livers from adjuvant-treated rats had (relative to normal) significantly higher alpha(1)-acid glycoprotein (orosomucoid) and iron tissue concentrations but lower cytochrome P-450 content. The hepatic extraction, metabolism, and ion trapping of propranolol were significantly impaired in adjuvant-treated rats and could be correlated with altered iron store and cytochrome P-450 activity. It is concluded that adjuvant-induced systemic inflammation alters hepatocellular morphology and biochemistry and consequently influences hepatic disposition of propranolol.