792 resultados para 670200 Fibre Processing and Textiles
Resumo:
Recent research has provided evidence of a link between behavioral measures of social cognition (SC) and neural and genetic correlates. Differences in face processing and variations in the oxytocin receptor (OXTR) gene have been associated with SC deficits and autism spectrum disorder (ASD) traits. Much work has examined the qualitative differences between those with ASD and typically developing (TD) individuals, but very little has been done to quantify the natural variation in ASD-like traits in the typical population. The present study examines this variation in TD children using a multidimensional perspective involving behavior assessment, neural electroencephalogram (EEG) testing, and OXTR genotyping. Children completed a series of neurocognitive assessments, provided saliva samples for sequencing, and completed a face processing task while connected to an EEG. No clear pattern emerged for EEG covariates or genotypes for individual OXTR single nucleotide polymorphisms (SNPs). However, SNPs rs2254298 and rs53576 consistently interacted such that the AG/GG allele combination of these SNPs was associated with poorer performance on neurocognitive measures. These results suggest that neither SNP in isolation is risk-conferring, but rather that the combination of rs2254298(A/G) and rs53576(G/G) confers a deleterious effect on SC across several neurocognitive measures. Copyright 2014. Published by Elsevier Ltd.
Resumo:
A series of aluminum alloys containing additions of scandium, zirconium, and ytterbium were cast to evaluate the effect of partial ytterbium substitution for scandium on tensile behavior. Due to the high price of scandium, a crucible-melt interaction study was performed to ensure no scandium was lost in graphite, alumina, magnesia, or zirconia crucibles after holding a liquid Al-Sc master alloy for 8 hours at 900 °C in an argon atmosphere. The alloys were subjected to an isochronal aging treatment and tested for conductivity and Vickers microhardness after each increment. For scandium-containing alloys, peak hardnesses of 520-790 MPa, and peak tensile stresses of 138-234 MPa were observed after aging from 150-350 °C for 3 hours in increments of 50 °C, and for alloys without scandium, peak hardnesses of 217-335 MPa and peak tensile stresses of 45-63 MPa were observed after a 3 hour, 150 °C aging treatment. The hardness and tensile strength of the ytterbium containing alloy was found to be lower than in the alloy with no ytterbium substitution.
Resumo:
Sustainable yields from water wells in hard-rock aquifers are achieved when the well bore intersects fracture networks. Fracture networks are often not readily discernable at the surface. Lineament analysis using remotely sensed satellite imagery has been employed to identify surface expressions of fracturing, and a variety of image-analysis techniques have been successfully applied in “ideal” settings. An ideal setting for lineament detection is where the influences of human development, vegetation, and climatic situations are minimal and hydrogeological conditions and geologic structure are known. There is not yet a well-accepted protocol for mapping lineaments nor have different approaches been compared in non-ideal settings. A new approach for image-processing/synthesis was developed to identify successful satellite imagery types for lineament analysis in non-ideal terrain. Four satellite sensors (ASTER, Landsat7 ETM+, QuickBird, RADARSAT-1) and a digital elevation model were evaluated for lineament analysis in Boaco, Nicaragua, where the landscape is subject to varied vegetative cover, a plethora of anthropogenic features, and frequent cloud cover that limit the availability of optical satellite data. A variety of digital image processing techniques were employed and lineament interpretations were performed to obtain 12 complementary image products that were evaluated subjectively to identify lineaments. The 12 lineament interpretations were synthesized to create a raster image of lineament zone coincidence that shows the level of agreement among the 12 interpretations. A composite lineament interpretation was made using the coincidence raster to restrict lineament observations to areas where multiple interpretations (at least 4) agree. Nine of the 11 previously mapped faults were identified from the coincidence raster. An additional 26 lineaments were identified from the coincidence raster, and the locations of 10 were confirmed by field observation. Four manual pumping tests suggest that well productivity is higher for wells proximal to lineament features. Interpretations from RADARSAT-1 products were superior to interpretations from other sensor products, suggesting that quality lineament interpretation in this region requires anthropogenic features to be minimized and topographic expressions to be maximized. The approach developed in this study has the potential to improve siting wells in non-ideal regions.
Processing and characterization of PbSnTe-based thermoelectric materials made by mechanical alloying
Resumo:
The research reported in this dissertation investigates the processes required to mechanically alloy Pb1-xSnxTe and AgSbTe2 and a method of combining these two end compounds to result in (y)(AgSbTe2)–(1 - y)(Pb1-xSnxTe) thermoelectric materials for power generation applications. In general, traditional melt processing of these alloys has employed high purity materials that are subjected to time and energy intensive processes that result in highly functional material that is not easily reproducible. This research reports the development of mechanical alloying processes using commercially available 99.9% pure elemental powders in order to provide a basis for the economical production of highly functional thermoelectric materials. Though there have been reports of high and low ZT materials fabricated by both melt alloying and mechanical alloying, the processing-structure-properties-performance relationship connecting how the material is made to its resulting functionality is poorly understood. This is particularly true for mechanically alloyed material, motivating an effort to investigate bulk material within the (y)(AgSbTe2)–(1 - y)(Pb1-xSnx- Te) system using the mechanical alloying method. This research adds to the body of knowledge concerning the way in which mechanical alloying can be used to efficiently produce high ZT thermoelectric materials. The processes required to mechanically alloy elemental powders to form Pb1-xSnxTe and AgSbTe2 and to subsequently consolidate the alloyed powder is described. The composition, phases present in the alloy, volume percent, size and spacing of the phases are reported. The room temperature electronic transport properties of electrical conductivity, carrier concentration and carrier mobility are reported for each alloy and the effect of the presence of any secondary phase on the electronic transport properties is described. An mechanical mixing approach for incorporating the end compounds to result in (y)(AgSbTe2)–(1-y)(Pb1-xSnxTe) is described and when 5 vol.% AgSbTe2 was incorporated was found to form a solid solution with the Pb1-xSnxTe phase. An initial attempt to change the carrier concentration of the Pb1-xSnxTe phase was made by adding excess Te and found that the carrier density of the alloys in this work are not sensitive to excess Te. It has been demonstrated using the processing techniques reported in this research that this material system, when appropriately doped, has the potential to perform as highly functional thermoelectric material.
Resumo:
Quantifying belowground dynamics is critical to our understanding of plant and ecosystem function and belowground carbon cycling, yet currently available tools for complex belowground image analyses are insufficient. We introduce novel techniques combining digital image processing tools and geographic information systems (GIS) analysis to permit semi-automated analysis of complex root and soil dynamics. We illustrate methodologies with imagery from microcosms, minirhizotrons, and a rhizotron, in upland and peatland soils. We provide guidelines for correct image capture, a method that automatically stitches together numerous minirhizotron images into one seamless image, and image analysis using image segmentation and classification in SPRING or change analysis in ArcMap. These methods facilitate spatial and temporal root and soil interaction studies, providing a framework to expand a more comprehensive understanding of belowground dynamics.
Resumo:
CD4(+) T cells play a central role in the pathogenesis of multiple sclerosis (MS). Generation, activation and effector function of these cells crucially depends on their interaction with MHC II-peptide complexes displayed by antigen presenting cells (APC). Processing and presentation of self antigens by different APC therefore influences the disease course at all stages. Selection by thymic APC leads to the generation of autoreactive T cells, which can be activated by peripheral APC. Reactivation by central nervous system APC leads to the initiation of the inflammatory response resulting in demyelination. In this review we will focus on how MHC class II antigenic epitopes are created by different APC from the thymus, the periphery and from the brain, and will discuss the relevance of the balance between creation and destruction of such epitopes in the context of MS. A solid understanding of these processes offers the possibility for designing future therapeutic strategies.
Resumo:
Past research has shown that the gender typicality of applicants’ faces affects leadership selection irrespective of a candidate’s gender: A masculine facial appearance is congruent with masculine-typed leadership roles, thus masculine-looking applicants are hired more certainly than feminine-looking ones. In the present study, we extended this line of research by investigating hiring decisions for both masculine- and feminine-typed professional roles. Furthermore, we used eye tracking to examine the visual exploration of applicants’ portraits. Our results indicate that masculine-looking applicants were favored for the masculine-typed role (leader) and feminine-looking applicants for the feminine-typed role (team member). Eye movement patterns showed that information about gender category and facial appearance was integrated during first fixations of the portraits. Hiring decisions, however, were not based on this initial analysis, but occurred at a second stage, when the portrait was viewed in the context of considering the applicant for a specific job.
Resumo:
Translational research has not yet elucidated whether alterations in central pain processes are related to peripheral inflammatory processes in chronic pain patients. We tested the hypothesis that the concentration of cytokines in the peritoneal fluid of endometriosis patients with chronic pain correlate with parameters of hyperexcitability of the nociceptive system. The concentrations of 15 peritoneal fluid cytokines were measured in 11 patients with chronic pelvic pain and a diagnosis of endometriosis. Six parameters assessing central pain processes were recorded. Positive correlations between concentration of some cytokines in the peritoneal fluid and amplification of central pain processing were found. The results suggest that inflammatory mechanisms may be important in the pathophysiology of altered central pain processes and that cytokines produced in the environment of endometriosis could act as mediators between the peripheral lesion and changes in central nociceptive processes.
Resumo:
Two genes with related functions in RNA biogenesis were recently reported in patients with familial ALS: the FUS/TLS gene at the ALS6 locus and the TARDBP/TDP-43 gene at the ALS10 locus [1, 2]. FUS has been implicated to function in several steps of gene expression, including transcription regulation [3], RNA splicing [4, 5], mRNA transport in neurons [6] and, interestingly, in microRNA (miRNA) processing [7]. The goal of this project is to identify the molecular mechanisms leading to the development of FUS mutations-associated ALS. Specifically, we want to test the hypothesis that these FUS mutations misregulate miRNA levels that in turn affect the expression of genes critical for motor neuron survival. In addition we want to test whether misregulation of the miRNA profile is a common feature in ALS. We have performed immunoprecipitations from total extracts of 293T cells expressing FLAG-tagged FUS to characterize its interactome by mass spectrometry. This proteomic study not only revealed a strong interaction of FUS with splicing factors, but shows that FUS might be involved in many, quite different pathways. To map which parts of the FUS protein contribute to the interaction with splicing factors, we have performed a set of experiments with a series of missense and deletion mutants. With this approach, we will not only gain information on the binding partners of FUS along with a map of the required domains for the interactions, but it will also help to unravel whether certain ALS-associated FUS mutations lead to a loss or gain of function due to gain or loss of interactors. Additionally, we have performed quantitative interactomics using SILAC to identify interactome differences of ALS-associated FUS mutants. To this end we have performed immunoprecipitations of total extract from 293T cells, stably transduced with constructs expressing wild-type FUS-FLAG as well as three different ALS-associated mutants (G156E, R244C, P525L). First results indicate striking differences in the interactome with certain RNA binding proteins. We are now validating these candidates in order to reveal the importance of these differential interactions in the context of ALS.