998 resultados para 570 Life sciences
Resumo:
Merozoites of malaria parasites invade red blood cells (RBCs), where they multiply by schizogony, undergoing development through ring, trophozoite and schizont stages that are responsible for malaria pathogenesis. Here, we report that a protein kinase-mediated signalling pathway involving host RBC PAK1 and MEK1, which do not have orthologues in the Plasmodium kinome, is selectively stimulated in Plasmodium falciparum-infected (versus uninfected) RBCs, as determined by the use of phospho-specific antibodies directed against the activated forms of these enzymes. Pharmacological interference with host MEK and PAK function using highly specific allosteric inhibitors in their known cellular IC50 ranges results in parasite death. Furthermore, MEK inhibitors have parasiticidal effects in vitro on hepatocyte and erythrocyte stages of the rodent malaria parasite Plasmodium berghei, indicating conservation of this subversive strategy in malaria parasites. These findings have profound implications for the development of novel strategies for antimalarial chemotherapy.
Resumo:
The liver stage of the Plasmodium parasite remains one of the most promising targets for intervention against malaria as it is clinically silent, precedes the symptomatic blood stage and represents a bottleneck in the parasite life cycle. However, many aspects of the development of the parasite during this stage are far from understood. During the liver stage, the parasite undergoes extensive replication, forming tens of thousands of infectious merozoites from each invading sporozoite. This implies a very efficient and accurate process of cytokinesis and thus also of organelle development and segregation. We have generated for the first time Plasmodium berghei double-fluorescent parasite lines, allowing visualization of the apicoplast, mitochondria and nuclei in live liver stage parasites. Using these we have seen that in parallel with nuclear division, the apicoplast and mitochondrion become two extensively branched and intertwining structures. The organelles then undergo impressive morphological and positional changes prior to cell division. To form merozoites, the parasite undergoes cytokinesis and the complex process of organelle development and segregation into the forming daughter merozoites could be analysed in detail using the newly generated transgenic parasites.
Resumo:
We examined genetic structure among five species of Lake Victoria haplochromine cichlids in four island communities, using a full factorial sampling design that compared genetic differentiation between pairs of species and populations of varying morphological similarity and geographical proximity. We found that allopatric conspecific populations were on average significantly more strongly differentiated than sympatric heterospecific populations of morphologically similar species. Allopatric heterospecific populations of morphologically dissimilar species were most differentiated. Our work demonstrates that phenotypic divergence can be maintained and perhaps even evolve in sympatry despite considerable gene flow between species. Conversely, phenotypic resemblance among conspecific populations can be maintained despite geographical isolation. Additionally we show that anthropogenically increased hybridization does not affect all sympatric species evenly but predominantly affects morphologically similar and closely related species. This has important implications for the evolution of reproductive isolation between species These findings are also consistent with the hypothesis of speciation reversal due to weakening of divergent selection and reproductive isolation as a consequence of habitat homogenization and offers an evolutionary mechanistic explanation for the observation that species poor assemblages in turbid areas of the lake are characterized by just one or two species in each of a few morphologically distinct genera.
Resumo:
Among the huge radiations of haplochromine cichlid fish in Lakes Malawi and Victoria, closely related species are often reproductively isolated via female mate choice although viable fertile hybrids can be produced when females are confined only with heterospecific males. We generated F(2) hybrid males from a cross between a pair of closely related sympatric cichlid fish from Lake Malawi. Laboratory mate choice experiments using microsatellite paternity analysis demonstrated that F(2) hybrid males differed significantly in their attractiveness to females of the two parental species, indicating heritable variation in traits involved in mate choice that may contribute to reproductive isolation between these species. We found no significant correlation between male mating success and any measurement of male colour pattern. A simple quantitative genetic model of reproductive isolation suggests that there may be as few as two chromosomal regions controlling species-specific attractiveness. We propose that adaptive radiation of Lake Malawi cichlids could be facilitated by the presence of genes with major effects on mate choice and reproductive isolation.
Resumo:
Numerical simulations of eye globes often rely on topographies that have been measured in vivo using devices such as the Pentacam or OCT. The topographies, which represent the form of the already stressed eye under the existing intraocular pressure, introduce approximations in the analysis. The accuracy of the simulations could be improved if either the stress state of the eye under the effect of intraocular pressure is determined, or the stress-free form of the eye estimated prior to conducting the analysis. This study reviews earlier attempts to address this problem and assesses the performance of an iterative technique proposed by Pandolfi and Holzapfel [1], which is both simple to implement and promises high accuracy in estimating the eye's stress-free form. A parametric study has been conducted and demonstrated reliance of the error level on the level of flexibility of the eye model, especially in the cornea region. However, in all cases considered 3-4 analysis iterations were sufficient to produce a stress-free form with average errors in node location <10(-6)mm and a maximal error <10(-4)mm. This error level, which is similar to what has been achieved with other methods and orders of magnitude lower than the accuracy of current clinical topography systems, justifies the use of the technique as a pre-processing step in ocular numerical simulations.
Resumo:
Introduction: Spinal fusion is a widely and successfully performed strategy for the treatment of spinal deformities and degenerative diseases. The general approach has been to stabilize the spine with implants so that a solid bony fusion between the vertebrae can develop. However, new implant designs have emerged that aim at preservation or restoration of the motion of the spinal segment. In addition to static, load sharing principles, these designs also require a profound knowledge of kinematic and dynamic properties to properly characterise the in vivo performance of the implants. Methods: To address this, an apparatus was developed that enables the intraoperative determination of the load–displacement behavior of spinal motion segments. The apparatus consists of a sensor-equipped distractor to measure the applied force between the transverse processes, and an optoelectronic camera to track the motion of vertebrae and the distractor. In this intraoperative trial, measurements from two patients with adolescent idiopathic scoliosis with right thoracic curves were made at four motion segments each. Results: At a lateral bending moment of 5 N m, the mean flexibility of all eight motion segments was 0.18 ± 0.08°/N m on the convex side and 0.24 ± 0.11°/N m on the concave side. Discussion: The results agree with published data obtained from cadaver studies with and without axial preload. Intraoperatively acquired data with this method may serve as an input for mathematical models and contribute to the development of new implants and treatment strategies.
Resumo:
Purpose Orthognathic surgery has the objective of altering facial balance to achieve esthetic results in patients who have severe disharmony of the jaws. The purpose was to quantify the soft tissue changes after orthognathic surgery, as well as to assess the differences in 3D soft tissue changes in the middle and lower third of the face between the 1- and 2-jaw surgery groups, in mandibular prognathism patients. Materials and Methods We assessed soft tissue changes of patients who have been diagnosed with mandibular prognathism and received either isolated mandibular surgery or bimaxillary surgery. The quantitative surface displacement was assessed by superimposing preoperative and postoperative volumetric images. An observer measured a surface-distance value that is shown as a contour line. Differences between the groups were determined by the Mann-Whitney U test. The Spearman correlation coefficient was used to evaluate a potential correlation between patients' surgical and cephalometric variables and soft tissue changes after orthognathic surgery in each group. Results There were significant differences in the middle third of the face between the 1- and 2-jaw surgery groups. Soft tissues in the lower third of the face changed in both surgery groups, but not significantly. The correlation patterns were more evident in the lower third of the face. Conclusion The overall soft tissue changes of the midfacial area were more evident in the 2-jaw surgery group. In 2-jaw surgery, significant changes would be expected in the midfacial area, but caution should be exercised in patients who have a wide alar base.