934 resultados para 3D quantitative findings
Resumo:
ABSTRACT: Nanotechnology in its widest sense seeks to exploit the special biophysical and chemical properties of materials at the nanoscale. While the potential technological, diagnostic or therapeutic applications are promising there is a growing body of evidence that the special technological features of nanoparticulate material are associated with biological effects formerly not attributed to the same materials at a larger particle scale. Therefore, studies that address the potential hazards of nanoparticles on biological systems including human health are required. Due to its large surface area the lung is one of the major sites of interaction with inhaled nanoparticles. One of the great challenges of studying particle-lung interactions is the microscopic visualization of nanoparticles within tissues or single cells both in vivo and in vitro. Once a certain type of nanoparticle can be identified unambiguously using microscopic methods it is desirable to quantify the particle distribution within a cell, an organ or the whole organism. Transmission electron microscopy provides an ideal tool to perform qualitative and quantitative analyses of particle-related structural changes of the respiratory tract, to reveal the localization of nanoparticles within tissues and cells and to investigate the 3D nature of nanoparticle-lung interactions.This article provides information on the applicability, advantages and disadvantages of electron microscopic preparation techniques and several advanced transmission electron microscopic methods including conventional, immuno and energy-filtered electron microscopy as well as electron tomography for the visualization of both model nanoparticles (e.g. polystyrene) and technologically relevant nanoparticles (e.g. titanium dioxide). Furthermore, we highlight possibilities to combine light and electron microscopic techniques in a correlative approach. Finally, we demonstrate a formal quantitative, i.e. stereological approach to analyze the distributions of nanoparticles in tissues and cells.This comprehensive article aims to provide a basis for scientists in nanoparticle research to integrate electron microscopic analyses into their study design and to select the appropriate microscopic strategy.
Resumo:
A study was designed to investigate the effect of medetomidine sedation on quantitative electroencephalography (q-EEG) in healthy young and adult cats to determine objective guidelines for diagnostic EEG recordings and interpretation. Preliminary visual examination of EEG recordings revealed high-voltage low-frequency background activity. Spindles, k-complexes and vertex sharp transients characteristic of sleep or sedation were superimposed on a low background activity. Neither paroxysmal activity nor EEG burst-suppression were observed. The spectral analysis of q-EEG included four parameters, namely, relative power (%), and mean, median and peak frequency (Hz) of all four frequency bands (delta, theta, alpha and beta). The findings showed a prevalence of slow delta and theta rhythms as opposed to fast alpha and beta rhythms in both young (group A) and adult (group B) cats. A posterior gradient was reported for the theta band and an anterior gradient for the alpha and beta bands in both groups, respectively. The relative power value in group B compared to group A was significantly higher for theta, alpha and beta bands, and lower for the delta band. The mean and median frequency values in group B was significantly higher for delta, theta and beta bands and lower for the alpha band. The study has shown that a medetomidine sedation protocol for feline EEG may offer a method for investigating bio-electrical cortical activity. The use of q-EEG analysis showed a decrease in high frequency bands and increased activity of the low frequency band in healthy cats under medetomidine sedation.
Resumo:
OBJECTIVES: To determine quantitative and qualitative image quality in patients undergoing magnetic resonance (MR) cholangiography at 3.0 Tesla (T) compared with 1.5 T. MATERIALS AND METHODS: Fifty patients (30 women; mean age, 51 years) underwent MR cholangiography at 1.5 T; another 50 patients (25 women; mean age 51 years) were scanned at 3.0 T. MR sequence protocol consisted of breath-hold single-slice rapid acquisition with relaxation enhancement (RARE) and a respiratory-triggered 3D turbo spin echo (3D TSE) sequence. Maximum intensity projections were generated from the 3D TSE datasets. Contrast-to-noise ratio (CNR) measurements between the common bile duct (CBD), left and right intrahepatic duct (LHD, RHD), and periductal tissue were performed. Three radiologists assessed qualitatively the visibility of the CBD, LHD, and RHD and the overall diagnostic quality. RESULTS: Mean gain in CNR at 3.0 T versus 1.5 T in all 3 locations ranged for the RARE sequence from 7.7% to 38.1% and for the 3D TSE from 0.5% to 26.1% (P > 0.05 for all differences). Qualitative analysis did not reveal any significant difference between the 2 field strengths (P > 0.05). CONCLUSIONS: MR cholangiography at 3.0 T shows a trend toward higher CNR without improving image quality significantly.
Resumo:
What motivates students to perform and pursue engineering design tasks? This study examines this question by way of three Learning Through Service (LTS) programs: 1) an on-going longitudinal study examining the impacts of service on engineering students, 2) an on-going analysis of an international senior design capstone program, and 3) an on-going evaluation of an international graduate-level research program. The evaluation of these programs incorporates both qualitative and quantitative methods, utilizing surveys, questionnaires, and interviews, which help to provide insight on what motivates students to do engineering design work. The quantitative methods were utilized in analyzing various instruments including: a Readiness assessment inventory, Intercultural Development Inventory, Sustainable Engineering through Service Learning survey, the Impacts of Service on Engineering Students’ survey, Motivational narratives, as well as some analysis for interview text. The results of these instruments help to provide some much needed insight on how prepared students are to participate in engineering programs. Additional qualitative methods include: Word clouds, Motivational narratives, as well as interview analysis. This thesis focused on how these instruments help to determine what motivates engineering students to pursue engineering design tasks. These instruments aim to collect some more in-depth information than the quantitative instruments will allow. Preliminary results suggest that of the 120 interviews analyzed Interest/Enjoyment, Application of knowledge and skills, as well as gaining knowledge are key motivating factors regardless of gender or academic level. Together these findings begin to shed light on what motivates students to perform engineering design tasks, which can be applied for better recruitment and retention in university programs.
Resumo:
PURPOSE: To identify and quantitate specific changes in optical coherence tomography (OCT) images of patients with type 2 idiopathic perifoveal telangiectasia (IPT). METHODS: In a prospectively designed, observational, case-control study, 28 eyes of 14 consecutive patients with IPT were examined with OCT and compared with eyes of 14 unaffected control subjects. Light reflectivity profiles of raw scan data of OCT images were quantitatively analyzed for differences in distance between different retinal reflectivity layers and their respective reflectivities. Maculae were examined in four separate regions: (1) central fovea, (2) nasal perifovea, (3) temporal perifovea, and (4) outside the fovea. RESULTS: Retinal thinning, shortening of the photoreceptor outer segments and loss of reflectivity of the photoreceptor ellipsoid region were found in the central foveal region as well as the nasal and temporal perifoveal regions in eyes with IPT. In addition, increased reflectivity of the outer nuclear layer was found in a sharply demarcated area of the inferotemporal perifoveal region in all affected eyes. Retinal tissue located more than 2000 mum away from the foveola was indistinguishable from that in normal eyes. CONCLUSIONS: Quantitative OCT analysis shows unique and specific changes in the photoreceptors of the central macula in IPT which can be detected from first clinical presentation. These changes may be of use as an additional diagnostic tool. Correlation of the findings in the outer nuclear layer with histologic studies may help identify the nature of the reflectivity increase and define more clearly the type of damage sustained by the photoreceptors in this condition.
Resumo:
OBJECTIVES: This study aimed to evaluate the degradation rate and long-term vascular responses to the absorbable metal stent (AMS). BACKGROUND: The AMS demonstrated feasibility and safety at 4 months in human coronary arteries. METHODS: The PROGRESS-AMS (Clinical Performance and Angiographic Results of Coronary Stenting) was a prospective, multicenter clinical trial of 63 patients with coronary artery disease who underwent AMS implantation. Angiography and intravascular ultrasound (IVUS) were conducted immediately after AMS deployment and at 4 months. Eight patients who did not require repeat revascularization at 4 months underwent late angiographic and IVUS follow-up from 12 to 28 months. RESULTS: The AMS was well-expanded upon deployment without immediate recoil. The major contributors for restenosis as detected by IVUS at 4 months were: decrease of external elastic membrane volume (42%), extra-stent neointima (13%), and intra-stent neointima (45%). From 4 months to late follow-up, paired IVUS analysis demonstrated complete stent degradation with durability of the 4-month IVUS indexes. The neointima was reduced by 3.6 +/- 5.2 mm(3), with an increase in the stent cross sectional area of 0.5 +/- 1.0 mm(2) (p = NS). The median in-stent minimal lumen diameter was increased from 1.87 to 2.17 mm at long-term follow-up. The median angiographic late loss was reduced from 0.62 to 0.40 mm by quantitative coronary angiography from 4 months to late follow-up. CONCLUSIONS: Intravascular ultrasound imaging supports the safety profile of AMS with degradation at 4 months and maintains durability of the results without any early or late adverse findings. Slower degradation is warranted to provide sufficient radial force to improve long-term patency rates of the AMS.
Resumo:
This study defines the feasibility of utilizing three-dimensional (3D) gradient-echo (GRE) MRI at 1.5T for T(2)* mapping to assess hip joint cartilage degenerative changes using standard morphological MR grading while comparing it to delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). MRI was obtained from 10 asymptomatic young adult volunteers and 33 patients with symptomatic femoroacetabular impingement (FAI). The protocol included T(2)* mapping without gadolinium-enhancement utilizing a 3D-GRE sequence with six echoes, and after gadolinium injection, routine hip sequences, and a dual-flip-angle 3D-GRE sequence for dGEMRIC T(1) mapping. Cartilage was classified as normal, with mild changes, or with severe degenerative changes based on morphological MRI. T(1) and T(2)* findings were subsequently correlated. There were significant differences between volunteers and patients in normally-rated cartilage only for T(1) values. Both T(1) and T(2)* values decreased significantly with the various grades of cartilage damage. There was a statistically significant correlation between standard MRI and T(2)* (T(1)) (P < 0.05). High intraclass correlation was noted for both T(1) and T(2)*. Correlation factor was 0.860 to 0.954 (T(2)*-T(1) intraobserver) and 0.826 to 0.867 (T(2)*-T(1) interobserver). It is feasible to gather further information about cartilage status within the hip joint using GRE T(2)* mapping at 1.5T.
Resumo:
This paper presents an empirical study of affine invariant feature detectors to perform matching on video sequences of people with non-rigid surface deformation. Recent advances in feature detection and wide baseline matching have focused on static scenes. Video frames of human movement capture highly non-rigid deformation such as loose hair, cloth creases, skin stretching and free flowing clothing. This study evaluates the performance of six widely used feature detectors for sparse temporal correspondence on single view and multiple view video sequences. Quantitative evaluation is performed of both the number of features detected and their temporal matching against and without ground truth correspondence. Recall-accuracy analysis of feature matching is reported for temporal correspondence on single view and multiple view sequences of people with variation in clothing and movement. This analysis identifies that existing feature detection and matching algorithms are unreliable for fast movement with common clothing.
Resumo:
Relatively little is known about past cold-season temperature variability in high-Alpine regions because of a lack of natural cold-season temperature proxies as well as under-representation of high-altitude sites in meteorological, early-instrumental and documentary data sources. Recent studies have shown that chrysophyte stomatocysts, or simply cysts (sub-fossil algal remains of Chrysophyceae and Synurophyceae), are among the very few natural proxies that can be used to reconstruct cold-season temperatures. This study presents a quantitative, high-resolution (5-year), cold-season (Oct–May) temperature reconstruction based on sub-fossil chrysophyte stomatocysts in the annually laminated (varved) sediments of high-Alpine Lake Silvaplana, SE Switzerland (1,789 m a.s.l.), since AD 1500. We first explore the method used to translate an ecologically meaningful variable based on a biological proxy into a simple climate variable. A transfer function was applied to reconstruct the ‘date of spring mixing’ from cyst assemblages. Next, statistical regression models were tested to convert the reconstructed ‘dates of spring mixing’ into cold-season surface air temperatures with associated errors. The strengths and weaknesses of this approach are thoroughly tested. One much-debated, basic assumption for reconstructions (‘stationarity’), which states that only the environmental variable of interest has influenced cyst assemblages and the influence of confounding variables is negligible over time, is addressed in detail. Our inferences show that past cold-season air-temperature fluctuations were substantial and larger than those of other temperature reconstructions for Europe and the Alpine region. Interestingly, in this study, recent cold-season temperatures only just exceed those of previous, multi-decadal warm phases since AD 1500. These findings highlight the importance of local studies to assess natural climate variability at high altitudes.
Resumo:
Dimensional alterations of the facial bone wall following tooth extractions in the esthetic zone have a profound effect on treatment outcomes. This prospective study in 39 patients is the first to investigate three-dimensional (3D) alterations of facial bone in the esthetic zone during the initial 8 wks following flapless tooth extraction. A novel 3D analysis was carried out, based on 2 consecutive cone beam computed tomographies (CBCTs). A risk zone for significant bone resorption was identified in central areas, whereas proximal areas yielded only minor changes. Correlation analysis identified a facial bone wall thickness of ≤ 1 mm as a critical factor associated with the extent of bone resorption. Thin-wall phenotypes displayed pronounced vertical bone resorption, with a median bone loss of 7.5 mm, as compared with thick-wall phenotypes, which decreased by only 1.1 mm. For the first time, 3D analysis has allowed for documentation of dimensional alterations of the facial bone wall in the esthetic zone of humans following extraction. It also characterized a risk zone prone to pronounced bone resorption in thin-wall phenotypes. Vertical bone loss was 3.5 times more severe than findings reported in the existing literature.
Resumo:
The analysis and reconstruction of forensically relevant events, such as traffic accidents, criminal assaults and homicides are based on external and internal morphological findings of the injured or deceased person. For this approach high-tech methods are gaining increasing importance in forensic investigations. The non-contact optical 3D digitising system GOM ATOS is applied as a suitable tool for whole body surface and wound documentation and analysis in order to identify injury-causing instruments and to reconstruct the course of event. In addition to the surface documentation, cross-sectional imaging methods deliver medical internal findings of the body. These 3D data are fused into a whole body model of the deceased. Additional to the findings of the bodies, the injury inflicting instruments and incident scene is documented in 3D. The 3D data of the incident scene, generated by 3D laser scanning and photogrammetry, is also included into the reconstruction. Two cases illustrate the methods. In the fist case a man was shot in his bedroom and the main question was, if the offender shot the man intentionally or accidentally, as he declared. In the second case a woman was hit by a car, driving backwards into a garage. It was unclear if the driver drove backwards once or twice, which would indicate that he willingly injured and killed the woman. With this work, we demonstrate how 3D documentation, data merging and animation enable to answer reconstructive questions regarding the dynamic development of patterned injuries, and how this leads to a real data based reconstruction of the course of event.
Resumo:
Reconstruction of shape and intensity from 2D x-ray images has drawn more and more attentions. Previously introduced work suffers from the long computing time due to its iterative optimization characteristics and the requirement of generating digitally reconstructed radiographs within each iteration. In this paper, we propose a novel method which uses a patient-specific 3D surface model reconstructed from 2D x-ray images as a surrogate to get a patient-specific volumetric intensity reconstruction via partial least squares regression. No DRR generation is needed. The method was validated on 20 cadaveric proximal femurs by performing a leave-one-out study. Qualitative and quantitative results demonstrated the efficacy of the present method. Compared to the existing work, the present method has the advantage of much shorter computing time and can be applied to both DXA images as well as conventional x-ray images, which may hold the potentials to be applied to clinical routine task such as total hip arthroplasty (THA).
Resumo:
Treatment retention is of paramount importance in cocaine treatment research as treatment completion rates are often 50% or less. Failure to retain cocaine patients in treatment has both significant research and clinical implications. In this paper we qualitatively and quantitatively demonstrate the inconsistency found across analyses of retention predictors in order to highlight the problem. First, a qualitative review of the published literature was undertaken to identify the frequency of predictors studied and their relations to treatment retention. Second, an empirical demonstration of predictor stability was conducted by testing a common set of variables across three similar 12-week cocaine clinical trials conducted by the same investigators in the same research clinic within a five-year period. Results of the literature review indicated inconsistently selected variables of convenience, widely varying statistical procedures, and discrepant findings of significance. Further, quantitative analyses resulted in discrepancies in variables identified as significant predictors of retention among the three studies. Potential sources of heterogeneity affecting the consistency of findings across studies and recommendations to improve the validity and generalizability of predictor findings in future studies are proposed.
Resumo:
Purpose: Congenital uterine anomalies often remain asymptomatic until they cause problems, for example during pregnancy. We studied the diagnostic aspects of two- and three-dimensional ultrasound and MRI. Materials and Methods: 63 women referred for suspected uterine anomalies were studied: In the first group (until July 2008) with 2 D-US and MRI, in the second group (from August 2008) additionally with 3 D-US; these women also had diagnostic or therapeutic operative confirmation. In the third group, only 3D-US was used. Results: In all women 3D-US was possible and successful. The most common anomaly was a subseptate uterus, while a septate uterus was less frequent, and uterus bicornis (unicollis) and uterus didelphys (bicornis bicollis) were rare. The women in the first two groups all underwent at least diagnostic hysteroscopy, and some (subseptate or septate uterus) underwent operative hysteroscopy. After preoperative volume imaging, laparoscopies were required less often. 3D-US diagnoses as judged by intraoperative findings were correct in 100 % of cases, while the MRI diagnoses in the same group were correct in only 7/13 cases. Conclusion: Since the introduction of volume imaging (MRI, later 3 D-US), laparoscopy during hysteroscopic septum resection was not necessary in the majority of cases. 3D-US brings the diagnostics of uterine anomalies back into the hands of the gynecologist and can provide the gynecological surgeon with a higher subjective degree of certainty during operative hysteroscopy.