953 resultados para 290802 Water and Sanitary Engineering
Resumo:
Magdeburg, Univ., Fak. für Informatik, Habil.-Schr., 2010
Resumo:
The aim of this survey is to assess the microbiological impact of irrigation water on lettuces produced on two urban agricultural sites and sold on markets; 6 and 7%, respectively, of lettuces coming from the sites of Pikine and Patte d'Oie were Salmonella spp. positive. Lettuces irrigated with shallow groundwater (''Ceanes'' water) were more contaminated (8% at both Pikine and Patte d'Oie sites) compared to those irrigated with wastewater (4% at Pikine) or well water (5% at Patte d'Oie). As for the lettuces in marketplaces, their contamination seems to depend on the type of treatment occurring before sale. Lettuces previously washed in the ``Ceanes'' were more contaminated than those rinsed with tap water at the marketplace. Salmonella spp. have been isolated from all marketplaces. However, the rates of contamination in markets surrounding Patte d'Oie are higher (9 and 11% at Grand Yoff and Dalifort) than those surrounding Pikine (4 and 2% at Zinc and Sham) or Rufisque, the control (2%). Our results confirm that the reuse of wastewater in irrigation is an alternative to animal manure. Its risk of microbial contamination can be significantly reduced by washing the vegetables with tap water before they are sold. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The alignment between competences, teaching-learning methodologies and assessment is a key element of the European Higher Education Area. This paper presents the efforts carried out by six Telematics, Computer Science and Electronic Engineering Education teachers towards achieving this alignment in their subjects. In a joint work with pedagogues, a set of recommended actions were identified. A selection of these actions were applied and evaluated in the six subjects. The cross-analysis of the results indicate that the actions allow students to better understand the methodologies and assessment planned for the subjects, facilitate (self-) regulation and increase students’ involvement in the subjects.
Resumo:
Accurate estimates of water losses by evaporation from shallow water tables are important for hydrological, agricultural, and climatic purposes. An experiment was conducted in a weighing lysimeter to characterize the diurnal dynamics of evaporation under natural conditions. Sampling revealed a completely dry surface sand layer after 5 days of evaporation. Its thickness was <1 cm early in the morning, increasing to reach 4?5 cm in the evening. This evidence points out fundamental limitations of the approaches that assume hydraulic connectivity from the water table up to the surface, as well as those that suppose monotonic drying when unsteady conditions prevail. The computed vapor phase diffusion rates from the apparent drying front based on Fick's law failed to reproduce the measured cumulative evaporation during the sampling day. We propose that two processes rule natural evaporation resulting from daily fluctuations of climatic variables: (i) evaporation of water, stored during nighttime due to redistribution and vapor condensation, directly into the atmosphere from the soil surface during the early morning hours, that could be simulated using a mass transfer approach and (ii) subsurface evaporation limited by Fickian diffusion, afterward. For the conditions prevailing during the sampling day, the amount of water stored at the vicinity of the soil surface was 0.3 mm and was depleted before 11:00. Combining evaporation from the surface before 11:00 and subsurface evaporation limited by Fickian diffusion after that time, the agreement between the estimated and measured cumulative evaporation was significantly improved.
Resumo:
Whirligig beetles (Gyrinidae) inhabit water surfaces and possess unique eyes which are split into the overwater and underwater parts. In this study we analyze the micro- and nanostructure of the split eyes of two Gyrinidae beetles genera, Gyrinus and Orectochilus. We find that corneae of the overwater ommatidia are covered with maze-like nanostructures, while the corneal surface of the underwater eyes is smooth. We further show that the overwater nanostructures possess no anti-wetting, but the anti-reflective properties with the spectral preference in the range of 450-600 nm. These findings illustrate the adaptation of the corneal nanocoating of the two halves of an insect's eye to two different environments. The novel natural anti-reflective nanocoating we describe may find future technological applications.
Resumo:
Today, information technology is strategically important to the goals and aspirations of the business enterprises, government and high-level education institutions – university. Universities are facing new challenges with the emerging global economy characterized by the importance of providing faster communication services and improving the productivity and effectiveness of individuals. New challenges such as provides an information network that supports the demands and diversification of university issues. A new network architecture, which is a set of design principles for build a network, is one of the pillar bases. It is the cornerstone that enables the university’s faculty, researchers, students, administrators, and staff to discover, learn, reach out, and serve society. This thesis focuses on the network architecture definitions and fundamental components. Three most important characteristics of high-quality architecture are that: it’s open network architecture; it’s service-oriented characteristics and is an IP network based on packets. There are four important components in the architecture, which are: Services and Network Management, Network Control, Core Switching and Edge Access. The theoretical contribution of this study is a reference model Architecture of University Campus Network that can be followed or adapted to build a robust yet flexible network that respond next generation requirements. The results found are relevant to provide an important complete reference guide to the process of building campus network which nowadays play a very important role. Respectively, the research gives university networks a structured modular model that is reliable, robust and can easily grow.
Resumo:
Chlamydia-related bacteria classified in the Chlamydiales order, are strictly intracellular bacteria and are able for the most to replicate in free-living amoebae. Amoebae, ubiquitous in the environment and especially in water, are very resistant to disinfection used in drinking water production. Thus, amoebae may reach easily the distribution and domestic water system, potentially sheltering amoeba-resisting bacteria including Legionella, mycobacteria and Chlamydiales. Indeed, some of these amoeba-resisting bacteria have been shown to cause respiratory infections in people inhaling contaminated water. Therefore, an environmental and clinical study was conducted to determine if Chlamydiales bacteria are also involved in respiratory infections and if a transmission through domestic drinking water could occur. First, large scale molecular and serological tools specific of Chlamydia-related bacteria were developed and then were applied on clinical samples from patients with and without pneumonia. Simultaneously, water and biofilm samples from households of the same patients were investigated using molecular and culture methods for the presence of Chlamydiales bacteria. Chlamydiales were detected in the nasopharyngeal flora from patients with and without pneumonia. However, no significant difference was observed between both groups. Conversely, serological investigations showed that antibody reactivity against members of the Criblamydiaceae was associated with pneumonia. The thesis provided very efficient tools that showed the presence of Chlamydiales in human nasopharyngeal flora as well as in the majority of the domestic drinking water. However, no transmission from domestic drinking water to human could be demonstrated. These tools will help in the future specifying the ecology and pathogenicity of the Chlamydia-re\ated bacteria and especially of the species belonging to the Criblamydiaceae family.
Resumo:
The purpose of this paper is to highlight scientific information resources that list journal and country rankings. These databases usually focus on the use of citation counts and number of publications to evaluate the interest, visibility and impact of research performance. The exposed resources are platforms that provide added value to authors improving their knowledge about research trends and also where to submit their papers.
Resumo:
In the process of phosphate rock acidulation, several impure P compounds may be formed along with the desirable Ca and NH4 phosphates. Such compounds normally reduce the content of water-soluble P and thus the agronomic effectiveness of commercial fertilizers. In order to study this problem, a greenhouse experiment consisting of three consecutive corn crops was conducted in samples of a Red-Yellow Latosol (Typical Hapludox) in a completely randomized design (6 x 2 x 2), with four replicates. Six commercial fertilizers were added to 2 kg of soil at a rate of 70 mg kg-1 P, based on the content of soluble P in neutral ammonium citrate plus water (NAC + H2O) of the fertilizers. Fertilizer application occurred either in the original form or leached to remove the water-soluble fraction, either by mixing the fertilizer with the whole soil in the pots or with only 1 % of its volume. The corn plants were harvested 40 days after emergence to determine the shoot dry matter and accumulated P. For the first crop and localized application, the elimination of water-soluble P from the original fertilizers resulted in less bioavailable P for the plants. For the second and third crops, the effects of P source, leaching and application methods were not as evident as for the first, suggesting that the tested P sources may have similar efficiencies when considering successive cropping. The conclusion was drawn that the water-insoluble but NAC-soluble fractions of commercial P fertilizers are not necessarily inert because they can provide P in the long run.
Resumo:
ABSTRACT. A dual-wavelength digital holographic microscope to measure absolute volume of living cells is proposed. The optical setup allows us to reconstruct two quantitative phase contrast images at two different wavelengths from a single hologram acquisition. When adding the absorbing dye fast green FCF as a dispersive agent to the extracellular medium, cellular thickness can be univocally determined in the full field of view. In addition to the absolute cell volume, the method can be applied to derive important biophysical parameters of living cells including osmotic membrane water permeability coefficient and the integral intracellular refractive index (RI). Further, the RI of transmembrane flux can be determined giving an indication about the nature of transported solutes. The proposed method is applied to cultured human embryonic kidney cells, Chinese hamster ovary cells, human red blood cells, mouse cortical astrocytes, and neurons.
Resumo:
Soil porosity, especially pore size distribution, is an important controlling factor for soil infiltration, hydraulic conductivity, and water retention. This study aimed to verify the effect of secondary-treated domestic wastewater (STW) on the porosity of a sandy loam Oxisol in the city of Lins, state of São Paulo, Brazil. The two-year experiment was divided into three plots: soil cultivated with corn and sunflower and irrigated with STW, soil cultivated and irrigated with sodic groundwater, and non-irrigated and non-cultivated soil (control). At the end of the experiment, undisturbed core samples were sampled from 0 to 2.0 m (8 depths). The water retention curves were obtained by tension plates and Richard's pressure plate apparatus, and the pore size distribution inferred from the retention curves. It was found that irrigation with treated wastewater and treated groundwater led to a decrease in microporosity (V MI), defined as the pore class ranging from 0.2 to 50 μm diameter. On the other hand, a significant increase in cryptoporosity (V CRI) (< 0.2 μm) was identified throughout the soil profile. The presence of Na+ in both waters confirmed the role of this ion on pore size distribution and soil moisture (higher water retention).
Resumo:
Interrill erosion occurs by the particle breakdown caused by raindrop impact, by particle transport in surface runoff, by dragging and suspension of particles disaggregated from the soil surface, thus removing organic matter and nutrients that are essential for agricultural production. Crop residues on the soil surface modify the characteristics of the runoff generated by rainfall and the consequent particle breakdown and sediment transport resulting from erosion. The objective of this study was to determine the minimum amount of mulch that must be maintained on the soil surface of a sugarcane plantation to reduce the soil, water and nutrient losses by decreasing interrill erosion. The study was conducted in Pradópolis, São Paulo State, in 0.5 x 1.0 m plots of an Oxisol, testing five treatments in four replications. The application rates were based on the crop residue production of the area of 1.4 kg m-2 (T1- no cane trash; T2-25 % of the cane trash; T3- 50 % trash; T4-75 % trash; T5-100 % sugarcane residues on the surface), and simulated rainfall was applied at an intensity of 65 mm h-1 for 60 min. Runoff samples were collected in plastic containers and soon after taken to the laboratory to quantify the losses of soil, water and nutrients. To minimize soil loss by interrill erosion, 75 % of the cane mulch must be maintained on the soil, to control water loss 50 % must be maintained and 25 % trash controls organic matter and nutrient losses. This information can contribute to optimize the use of this resource for soil conservation on the one hand and the production of clean energy in sugar and alcohol industries on the other.
Resumo:
The liquid-liquid critical point scenario of water hypothesizes the existence of two metastable liq- uid phases low-density liquid (LDL) and high-density liquid (HDL) deep within the supercooled region. The hypothesis originates from computer simulations of the ST2 water model, but the stabil- ity of the LDL phase with respect to the crystal is still being debated. We simulate supercooled ST2 water at constant pressure, constant temperature, and constant number of molecules N for N ≤ 729 and times up to 1 μs. We observe clear differences between the two liquids, both structural and dynamical. Using several methods, including finite-size scaling, we confirm the presence of a liquid-liquid phase transition ending in a critical point. We find that the LDL is stable with respect to the crystal in 98% of our runs (we perform 372 runs for LDL or LDL-like states), and in 100% of our runs for the two largest system sizes (N = 512 and 729, for which we perform 136 runs for LDL or LDL-like states). In all these runs, tiny crystallites grow and then melt within 1 μs. Only for N ≤ 343 we observe six events (over 236 runs for LDL or LDL-like states) of spontaneous crystal- lization after crystallites reach an estimated critical size of about 70 ± 10 molecules.