980 resultados para 280406 Mathematical Software
Resumo:
The number of software vendors offering ‘Software-as-a-Service’ has been increasing in recent years. In the Software-as-a-Service model software is operated by the software vendor and delivered to the customer as a service. Existing business models and industry structures are challenged by the changes to the deployment and pricing model compared to traditional software. However, the full implications on the way companies create, deliver and capture value are not yet sufficiently analyzed. Current research is scattered on specific aspects, only a few studies provide a more holistic view of the impact from a business model perspective. For vendors it is, however, crucial to be aware of the potentially far reaching consequences of Software-as-a-Service. Therefore, a literature review and three exploratory case studies of leading software vendors are used to evaluate possible implications of Software-as-a-Service on business models. The results show an impact on all business model building blocks and highlight in particular the often less articulated impact on key activities, customer relationship and key partnerships for leading software vendors and show related challenges, for example, with regard to the integration of development and operations processes. The observed implications demonstrate the disruptive character of the concept and identify future research requirements.
Resumo:
There are many applications in aeronautics where there exist strong couplings between disciplines. One practical example is within the context of Unmanned Aerial Vehicle(UAV) automation where there exists strong coupling between operation constraints, aerodynamics, vehicle dynamics, mission and path planning. UAV path planning can be done either online or offline. The current state of path planning optimisation online UAVs with high performance computation is not at the same level as its ground-based offline optimizer's counterpart, this is mainly due to the volume, power and weight limitations on the UAV; some small UAVs do not have the computational power needed for some optimisation and path planning task. In this paper, we describe an optimisation method which can be applied to Multi-disciplinary Design Optimisation problems and UAV path planning problems. Hardware-based design optimisation techniques are used. The power and physical limitations of UAV, which may not be a problem in PC-based solutions, can be approached by utilizing a Field Programmable Gate Array (FPGA) as an algorithm accelerator. The inevitable latency produced by the iterative process of an Evolutionary Algorithm (EA) is concealed by exploiting the parallelism component within the dataflow paradigm of the EA on an FPGA architecture. Results compare software PC-based solutions and the hardware-based solutions for benchmark mathematical problems as well as a simple real world engineering problem. Results also indicate the practicality of the method which can be used for more complex single and multi objective coupled problems in aeronautical applications.
Resumo:
Machine learning has become a valuable tool for detecting and preventing malicious activity. However, as more applications employ machine learning techniques in adversarial decision-making situations, increasingly powerful attacks become possible against machine learning systems. In this paper, we present three broad research directions towards the end of developing truly secure learning. First, we suggest that finding bounds on adversarial influence is important to understand the limits of what an attacker can and cannot do to a learning system. Second, we investigate the value of adversarial capabilities-the success of an attack depends largely on what types of information and influence the attacker has. Finally, we propose directions in technologies for secure learning and suggest lines of investigation into secure techniques for learning in adversarial environments. We intend this paper to foster discussion about the security of machine learning, and we believe that the research directions we propose represent the most important directions to pursue in the quest for secure learning.
Resumo:
Single particle analysis (SPA) coupled with high-resolution electron cryo-microscopy is emerging as a powerful technique for the structure determination of membrane protein complexes and soluble macromolecular assemblies. Current estimates suggest that ∼104–105 particle projections are required to attain a 3 Å resolution 3D reconstruction (symmetry dependent). Selecting this number of molecular projections differing in size, shape and symmetry is a rate-limiting step for the automation of 3D image reconstruction. Here, we present SwarmPS, a feature rich GUI based software package to manage large scale, semi-automated particle picking projects. The software provides cross-correlation and edge-detection algorithms. Algorithm-specific parameters are transparently and automatically determined through user interaction with the image, rather than by trial and error. Other features include multiple image handling (∼102), local and global particle selection options, interactive image freezing, automatic particle centering, and full manual override to correct false positives and negatives. SwarmPS is user friendly, flexible, extensible, fast, and capable of exporting boxed out projection images, or particle coordinates, compatible with downstream image processing suites.
Resumo:
Teachers are under increasing pressure from government and school management to incorporate technology into lessons. They need to consider which technologies can most effectively enhance subject learning, encourage higher order thinking skills and support the performance of authentic tasks. This chapter reviews the practical and theoretical tools that have been developed to aid teachers in selecting software and reviews the software assessment methodologies from the 1980s to the present day. It concludes that teachers need guidance to structure the evaluation of technology, to consider its educational affordances, its usability, its suitability for the students and the classroom environment and its fit to the teachers’ preferred pedagogies.
Resumo:
Its mission is to promote Mathematics and Science in Africa and to provide a focal point for Mathematics university training in Africa. It offers scholarships for up to 50 students to come and study for a period of nine months. Of the 50 students, about 15 positions are reserved for females. In the 2006/2007 intake there were over 250 applicants. The students are housed and fed and their return travel from their home town is fully funded. Lecturers also stay at AIMS and share their meals with the students, so that a rapport quickly develops. The students are away from their families and friends for nine months and are absolutely committed to the discipline of Mathematics. When they first arrive, some of them have little ability in English but since all tuition is in English they quickly learn. Some find the transitions difficult but they all support one another and at the end of their time their English skills are very good. The students do a series of subjects that last for about three weeks each, consisting of 30 contact hours, as well as a thesis/project. Each course has a number of assignments associated with it and these get evaluated. AIMS has seven or eight teaching assistants who help with the tutorials, marking, advice, and who are a vital component of AIMS.
Resumo:
In this paper we construct a mathematical model for the genetic regulatory network of the lactose operon. This mathematical model contains transcription and translation of the lactose permease (LacY) and a reporter gene GFP. The probability of transcription of LacY is determined by 14 binding states out of all 50 possible binding states of the lactose operon based on the quasi-steady-state assumption for the binding reactions, while we calculate the probability of transcription for the reporter gene GFP based on 5 binding states out of 19 possible binding states because the binding site O2 is missing for this reporter gene. We have tested different mechanisms for the transport of thio-methylgalactoside (TMG) and the effect of different Hill coefficients on the simulated LacY expression levels. Using this mathematical model we have realized one of the experimental results with different LacY concentrations, which are induced by different concentrations of TMG.
Resumo:
Goldin (2003) and McDonald, Yanchar, and Osguthorpe (2005) have called for mathematics learning theory that reconciles the chasm between ideologies, and which may advance mathematics teaching and learning practice. This paper discusses the theoretical underpinnings of a recently completed PhD study that draws upon Popper’s (1978) three-world model of knowledge as a lens through which to reconsider a variety of learning theories, including Piaget’s reflective abstraction. Based upon this consideration of theories, an alternative theoretical framework and complementary operational model was synthesised, the viability of which was demonstrated by its use to analyse the domain of early-number counting, addition and subtraction.
Resumo:
Computer resource allocation represents a significant challenge particularly for multiprocessor systems, which consist of shared computing resources to be allocated among co-runner processes and threads. While an efficient resource allocation would result in a highly efficient and stable overall multiprocessor system and individual thread performance, ineffective poor resource allocation causes significant performance bottlenecks even for the system with high computing resources. This thesis proposes a cache aware adaptive closed loop scheduling framework as an efficient resource allocation strategy for the highly dynamic resource management problem, which requires instant estimation of highly uncertain and unpredictable resource patterns. Many different approaches to this highly dynamic resource allocation problem have been developed but neither the dynamic nature nor the time-varying and uncertain characteristics of the resource allocation problem is well considered. These approaches facilitate either static and dynamic optimization methods or advanced scheduling algorithms such as the Proportional Fair (PFair) scheduling algorithm. Some of these approaches, which consider the dynamic nature of multiprocessor systems, apply only a basic closed loop system; hence, they fail to take the time-varying and uncertainty of the system into account. Therefore, further research into the multiprocessor resource allocation is required. Our closed loop cache aware adaptive scheduling framework takes the resource availability and the resource usage patterns into account by measuring time-varying factors such as cache miss counts, stalls and instruction counts. More specifically, the cache usage pattern of the thread is identified using QR recursive least square algorithm (RLS) and cache miss count time series statistics. For the identified cache resource dynamics, our closed loop cache aware adaptive scheduling framework enforces instruction fairness for the threads. Fairness in the context of our research project is defined as a resource allocation equity, which reduces corunner thread dependence in a shared resource environment. In this way, instruction count degradation due to shared cache resource conflicts is overcome. In this respect, our closed loop cache aware adaptive scheduling framework contributes to the research field in two major and three minor aspects. The two major contributions lead to the cache aware scheduling system. The first major contribution is the development of the execution fairness algorithm, which degrades the co-runner cache impact on the thread performance. The second contribution is the development of relevant mathematical models, such as thread execution pattern and cache access pattern models, which in fact formulate the execution fairness algorithm in terms of mathematical quantities. Following the development of the cache aware scheduling system, our adaptive self-tuning control framework is constructed to add an adaptive closed loop aspect to the cache aware scheduling system. This control framework in fact consists of two main components: the parameter estimator, and the controller design module. The first minor contribution is the development of the parameter estimators; the QR Recursive Least Square(RLS) algorithm is applied into our closed loop cache aware adaptive scheduling framework to estimate highly uncertain and time-varying cache resource patterns of threads. The second minor contribution is the designing of a controller design module; the algebraic controller design algorithm, Pole Placement, is utilized to design the relevant controller, which is able to provide desired timevarying control action. The adaptive self-tuning control framework and cache aware scheduling system in fact constitute our final framework, closed loop cache aware adaptive scheduling framework. The third minor contribution is to validate this cache aware adaptive closed loop scheduling framework efficiency in overwhelming the co-runner cache dependency. The timeseries statistical counters are developed for M-Sim Multi-Core Simulator; and the theoretical findings and mathematical formulations are applied as MATLAB m-file software codes. In this way, the overall framework is tested and experiment outcomes are analyzed. According to our experiment outcomes, it is concluded that our closed loop cache aware adaptive scheduling framework successfully drives co-runner cache dependent thread instruction count to co-runner independent instruction count with an error margin up to 25% in case cache is highly utilized. In addition, thread cache access pattern is also estimated with 75% accuracy.
Resumo:
Hypertrophic scars arise when there is an overproduction of collagen during wound healing. These are often associated with poor regulation of the rate of programmed cell death(apoptosis) of the cells synthesizing the collagen or by an exuberant inflammatory response that prolongs collagen production and increases wound contraction. Severe contractures that occur, for example, after a deep burn can cause loss of function especially if the wound is over a joint such as the elbow or knee. Recently, we have developed a morphoelastic mathematical model for dermal repair that incorporates the chemical, cellular and mechanical aspects of dermal wound healing. Using this model, we examine pathological scarring in dermal repair by first assuming a smaller than usual apoptotic rate for myofibroblasts, and then considering a prolonged inflammatory response, in an attempt to determine a possible optimal intervention strategy to promote normal repair, or terminate the fibrotic scarring response. Our model predicts that in both cases it is best to apply the intervention strategy early in the wound healing response. Further, the earlier an intervention is made, the less aggressive the intervention required. Finally, if intervention is conducted at a late time during healing, a significant intervention is required; however, there is a threshold concentration of the drug or therapy applied, above which minimal further improvement to wound repair is obtained.
Resumo:
Software forms an important part of the interface between citizens and their government. An increasing amount of government functions are being performed, controlled, or delivered electronically. This software, like all language, is never value-neutral, but must, to some extent, reflect the values of the coder and proprietor. The move that many governments are making towards e-governance, and the increasing reliance that is being placed upon software in government, necessitates a rethinking of the relationships of power and control that are embodied in software.
Resumo:
Many modern business environments employ software to automate the delivery of workflows; whereas, workflow design and generation remains a laborious technical task for domain specialists. Several differ- ent approaches have been proposed for deriving workflow models. Some approaches rely on process data mining approaches, whereas others have proposed derivations of workflow models from operational struc- tures, domain specific knowledge or workflow model compositions from knowledge-bases. Many approaches draw on principles from automatic planning, but conceptual in context and lack mathematical justification. In this paper we present a mathematical framework for deducing tasks in workflow models from plans in mechanistic or strongly controlled work environments, with a focus around automatic plan generations. In addition, we prove an associative composition operator that permits crisp hierarchical task compositions for workflow models through a set of mathematical deduction rules. The result is a logical framework that can be used to prove tasks in workflow hierarchies from operational information about work processes and machine configurations in controlled or mechanistic work environments.
Resumo:
Modern technology now has the ability to generate large datasets over space and time. Such data typically exhibit high autocorrelations over all dimensions. The field trial data motivating the methods of this paper were collected to examine the behaviour of traditional cropping and to determine a cropping system which could maximise water use for grain production while minimising leakage below the crop root zone. They consist of moisture measurements made at 15 depths across 3 rows and 18 columns, in the lattice framework of an agricultural field. Bayesian conditional autoregressive (CAR) models are used to account for local site correlations. Conditional autoregressive models have not been widely used in analyses of agricultural data. This paper serves to illustrate the usefulness of these models in this field, along with the ease of implementation in WinBUGS, a freely available software package. The innovation is the fitting of separate conditional autoregressive models for each depth layer, the ‘layered CAR model’, while simultaneously estimating depth profile functions for each site treatment. Modelling interest also lay in how best to model the treatment effect depth profiles, and in the choice of neighbourhood structure for the spatial autocorrelation model. The favoured model fitted the treatment effects as splines over depth, and treated depth, the basis for the regression model, as measured with error, while fitting CAR neighbourhood models by depth layer. It is hierarchical, with separate onditional autoregressive spatial variance components at each depth, and the fixed terms which involve an errors-in-measurement model treat depth errors as interval-censored measurement error. The Bayesian framework permits transparent specification and easy comparison of the various complex models compared.