991 resultados para 162-984
Resumo:
The episodic occurrence of debris flow events in response to stochastic precipitation and wildfire events makes hazard prediction challenging. Previous work has shown that frequency-magnitude distributions of non-fire-related debris flows follow a power law, but less is known about the distribution of post-fire debris flows. As a first step in parameterizing hazard models, we use frequency-magnitude distributions and cumulative distribution functions to compare volumes of post-fire debris flows to non-fire-related debris flows. Due to the large number of events required to parameterize frequency-magnitude distributions, and the relatively small number of post-fire event magnitudes recorded in the literature, we collected data on 73 recent post-fire events in the field. The resulting catalog of 988 debris flow events is presented as an appendix to this article. We found that the empirical cumulative distribution function of post-fire debris flow volumes is composed of smaller events than that of non-fire-related debris flows. In addition, the slope of the frequency-magnitude distribution of post-fire debris flows is steeper than that of non-fire-related debris flows, evidence that differences in the post-fire environment tend to produce a higher proportion of small events. We propose two possible explanations: 1) post-fire events occur on shorter return intervals than debris flows in similar basins that do not experience fire, causing their distribution to shift toward smaller events due to limitations in sediment supply, or 2) fire causes changes in resisting and driving forces on a package of sediment, such that a smaller perturbation of the system is required in order for a debris flow to occur, resulting in smaller event volumes.
Resumo:
Although they are fossils of uncertain origin, bolboforms are the best calcareous microfossil group for Neogene biostratigraphy in the North Atlantic. Fifty-two Bolboforma species were observed at the Hatton-Rockall Basin in Ocean Drilling Program Holes 982A (26 samples) and 982B (301 samples) and in Deep Sea Drilling Project Hole 116 (71 samples). The sequence investigated spans the interval from lower Miocene to upper Pliocene. Fourteen zones/subzones were identified and correlated with the calcareous nannoplankton zones, the planktonic foraminifer biostratigraphy, and the time (Ma). The last occurrence of the genus Bolboforma can be dated to 2.84 Ma. Different Bolboforma specimens of middle Miocene age, observed in upper Miocene and upper middle Miocene sediments at Site 982, document redeposition of sediment from the Rockall Bank into the Hatton-Rockall Basin during the latest middle Miocene and late Miocene.
Resumo:
A geochemical study of sediments from Ocean Drilling Program Site 983 was conducted to examine low-frequency variations in carbonate content as expressed by blue-band reflectance (450-500 nm) over the last 1.2 Ma. Sedimentary percent organic carbon, percent carbonate, and excess barium (Ba[ex]) were used as the primary tools to evaluate the factors responsible for these long-term changes. We observe positive correlation between the mass-accumulation rate of various biogenic components and the mass-accumulation rate of Ba(ex), especially in sediments younger than ~600 ka. Deeper in the section (~600-1200 ka), the correlation between Ba(ex) and the other biogenic tracers is weak. The lack of correlation between Ba(ex) and biogenic carbonate likely results either from a higher supply of terrigenous material at that time (which confounds Ba[ex] estimation), or remobilization of Ba resulting from low pore-water sulfate ion concentrations, or both. Nonbiogenic sediments at Site 983, represented by Th, K2O, and the molar Ti/Al ratio, exhibit cyclic variations that represent mixing between continental and oceanic (i.e., basaltic) terrigenous sources. The timing of these cycles matches that of the major glacial-interglacial cycles, which suggests that they result from the supply of continental material as ice-rafted debris during glacial periods and fine-grained basaltic material by bottom currents during interglacial periods. Given these observations, the most likely causes for the low-frequency carbonate variations observed in the Site 983 sediments are shifts in surface productivity and, to a lesser extent, dilution by the input of terrigenous material.