988 resultados para 160.2540


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable oxygen isotope data from four holes drilled at the Ocean Drilling Program Site 967, which is located on the lower northern slope of the Eratosthenes Seamount, provide a continuous record of Eastern Mediterranean surface-water conditions during the last 3.2 Ma. A high-resolution stratigraphy for the Pliocene-Pleistocene sequence was established by using a combination of astronomical calibration of sedimentary cycles, nannofossil stratigraphy, and stable oxygen isotope fluctuations. Sapropels and color cycles are present throughout the last 3.2 Ma at Site 967, and their ages, as determined by calibration against the precessional component of the astronomical record, are consistent with those estimated for the sapropels of the classical land-based marine sequences of the Punta Piccola, San Nicola, Singa, and Vrica sections (southern Italy). The Site 967 oxygen isotope record shows large amplitude fluctuations mainly caused by variations in surface water salinity throughout the entire period. Spectral analysis shows that fluctuations in the d18O record were predominantly influenced by orbital obliquity and precessional forcing from 3.2 to 1 Ma, and all main orbital frequencies characterize the d18O record for the last million years. The start of sapropel formation at 3.2 Ma indicates a possible link between sapropel formation and the build up of northern hemisphere ice sheets. The dominance of the obliquity cycle in the interval from 3.2-1 Ma further points to the sensitivity of Eastern Mediterranean climate to the fluctuations in the volume of Arctic ice sheets. An intensification of negative isotope anomalies at Site 967, relative to the open ocean, supports a link between high run-off (during warm periods) and sapropel formation. freshwater input would have inhibited deep-water formation, which led to stagnation of deeper waters. Comparison with the land sections also confirms that differential preservation and diagenesis play a key role in sapropel occurrence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A distinct Pliocene eastern Mediterranean sapropel (i-282), recovered from three Ocean Drilling Program (ODP) Leg 160 Sites, has been investigated for its organic and inorganic composition. This sapropel is characterized by high organic carbon (Corg) and trace element contents, and the presence of isorenieratene derivatives. The latter suggests that the base of the photic zone was sulphidic during formation of the sapropel. Combined with evidence of bottom water anoxia (preservation of laminae, high redox-sensitive trace element contents, and the abundance and isotopic composition of pyrite) this leads to the tentative conclusion that almost the entire water column may have been anoxic. This anoxia resulted from high productivity and not from stagnation, because an approximation of the trace element budget during sapropel formation shows that water exchange with the western Mediterranean is needed. Entire water column anoxia has been suggested earlier for several black shales. With regard to the depositional environment and the Corg content, however, only the Cenomanian=Turonian Boundary Event (CTBE) black shales appear to be comparable to this sapropel. The proposed trace element removal mechanism of scavenging and (co-)precipitation in an anoxic water column, is thought to be similar for both types of deposits. The ultimate trace element source for the sapropel, however, is seawater, whereas it is hydrothermal and fluvial input for CTBE black shales (because they have a larger temporal and spatial distribution). Nonetheless, the Corg-rich eastern Mediterranean Pliocene sapropel discussed here may be considered to be a younger analogue of CTBE black shales.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: