976 resultados para 107-651
Resumo:
The Rock-Eval pyrolysis of rock samples and the elemental analysis of kerogens show clear differences between Messinian black shales and Pliocene-Pleistocene sapropels recovered during ODP Leg 107. The Messinian black shales are characterized by a large variety of compositions which probably reflects a great diversity of depositional and diagenetic paleoenvironments. In contrast, the Pliocene-Pleistocene sapropels, occurring as discrete layers in nannofossil oozes barren of organic carbon, constitute a rather homogeneous group in terms of organic content. A considerable contribution of terrestrial organic matter in the sapropels could mean that an identical phenomenon of terrestrial input has been periodically reproduced in the basin. The maturity and the nature of the organic matter are discussed with respect to anomalous values recorded for Tmax parameter.
Resumo:
In the Tyrrhenian Sea (Western Mediterranean), unusual reddish, soft to lithified, dolomitic sediments up to 45 m thick overlie igneous crust at the base of thick Pliocene-Quaternary deep-sea sediment successions in the Marsili (Site 650) and Vavilov (Site 651) basins. These sediments also overlie the Gortani Ridge, a basaltic Seamount near the base of the Sardinian continental margin (Site 655). At both basinal sites (650, 651), the lowest sediments are dolomitic, with manganese oxide (MnO) segregations. Whole-rock X-ray diffraction indicates abundant dolomite and quartz, with subordinate calcite, illite (authigenic), feldspar and minor kaolinite, chlorite, and anhydrite. Chemical analyses show strong enrichment in magnesium oxide (MgO) and MnO relative to shale or deep-sea clay. Mg and Mn correlate positively and exhibit decreasing concentrations up the succession in the Marsili Basin (Site 650). The following scenario is proposed: peridotites were exposed on the seafloor in the Vavilov Basin (Site 651) and then eroded, depositing talc in local fine-grained dolomitic sediments within the igneous basement. After local magmatism ended, the igneous basement at each site subsided rapidly (about 800 m/m.y.) and was blanketed with calcareous and clay-rich oozes. During early diagenesis (from isotopic evidence; McKenzie et al., this volume) tepid fluids, of modified seawater composition, reacted with and dolomitized the overlying deep-sea sediments. At Site 651 additional Mg may have been extracted from asthenosphere peridotite cored at shallow depths (about 100 m). One can hypothesize that fluids rich in Mg and Mn were flushed from the igneous basement, triggered by extensional faulting and local tilting during subsidence of the basement, and that these fluids then dolomitized the base of the overlying sediment succession. Late tectonic movements in the Vavilov Basin (Site 651) fractured already lithified dolomitic sediments and more reducing (? hydrothermal) fluids locally remobilized Fe and Mn and corroded dolomite crystals.
Resumo:
Basal dolomitic sediments were recovered at three drill sites in the Tyrrhenian Sea during Ocean Drilling Program (ODP) Leg 107 (Sites 650, 651, and 655). These sediments overlie the basaltic basement complex and are enriched in iron, and in some instances, also in manganese. The manganese enrichments, together with a very slight enrichment in trace transition elements, strongly suggest that the basal sediments have an affinity to deep-sea metalliferous deposits of hydrothermal origin. At Sites 651 and 655, the dolostones contain variable amounts of authigenic palygorskite, a Mgrich clay mineral. At Site 651, the basal sediments are 40 m thick and contain nonstoichiometric dolomite, sometimes Ca rich, but primarily Mg rich. The occurrence of Mg-rich dolomite with excess Mg up to 4% is unusual for the deep-sea environment; it may be associated with a hydrothermally driven flux of altered sea water through the directly underlying basement complex, which comprises basalt, dolerite, and serpentinized peridotite. Low-temperature alteration of the basement complex could produce solutions enriched in Mg. Oxygen-isotope equilibrium temperatures indicate that all of the studied dolomites formed under low-temperature conditions (i.e., < 70?C). The carbon-isotope compositions, together with the strong isotopic covariance, suggest that the Mg-rich dolomite precipitated more rapidly than the Carich dolomite. We suggest that the low-temperature, hydrothermal convection of Mg-rich solutions through the basal sediments in this back-arc basin environment (1) overcame kinetic problems related to the formation of massive dolostones, and (2) provided a mass-transport mechanism for dolomitization.
Resumo:
Time control is essential for the reconstruction of geological processes. We use a combination of relative and absolute methods to establish the chronology and related paleoclimatic processes for Late Neogene lacustrine sediment from the Ptolemais Basin, northern Greece. We determined changes in magnetic polarity and correlated them to the global magnetic polarity time scale, which again is calibrated by radiometric methods, to provide a low-resolution age model for the Upper Miocene to Lower Pliocene (7 - 3 Ma). Sedimentary successions show rhythmic alterations of lignites, clays, and marls. Using photospetrometry we measured this variability at 1-cm resolution, and correlated the pattern to known changes in earth's orbital parameters, namely to eccentricity and precession. For 230-m long borehole KAP-107 from the Amynteon Sub-Basin we obtained a high-resolution age model that spans 2 myr from 5.1 to 3.1 Ma, with age control points at insolation maxima (20-kyr resolution). We recommend using photospectrometry as reliable tool to establish orbital-based chronologies and to reconstruct paleoclimate variability at high resolution.