963 resultados para 1-Phosphatidylinositol 3-Kinase
Resumo:
Newsletter produced by the Iowa Dental Board.
Resumo:
Cyclooxygenase-2 (COX-2), a key enzyme in prostaglandin synthesis, is highly expressed during inflammation and cellular transformation and promotes tumor progression and angiogenesis. We have previously demonstrated that endothelial cell COX-2 is required for integrin alphaVbeta3-dependent activation of Rac-1 and Cdc-42 and for endothelial cell spreading, migration, and angiogenesis (Dormond, O., Foletti, A., Paroz, C., and Ruegg, C. (2001) Nat. Med. 7, 1041-1047; Dormond, O., Bezzi, M., Mariotti, A., and Ruegg, C. (2002) J. Biol. Chem. 277, 45838-45846). In this study, we addressed the question of whether integrin-mediated cell adhesion may regulate COX-2 expression in endothelial cells. We report that cell detachment from the substrate caused rapid degradation of COX-2 protein in human umbilical vein endothelial cells (HUVEC) independent of serum stimulation. This effect was prevented by broad inhibition of cellular proteinases and by neutralizing lysosomal activity but not by inhibiting the proteasome. HUVEC adhesion to laminin, collagen I, fibronectin, or vitronectin induced rapid COX-2 protein expression with peak levels reached within 2 h and increased COX-2-dependent prostaglandin E2 production. In contrast, nonspecific adhesion to poly-L-lysine was ineffective in inducing COX-2 expression. Furthermore, the addition of matrix proteins in solution promoted COX-2 protein expression in suspended or poly-L-lysine-attached HUVEC. Adhesion-induced COX-2 expression was strongly suppressed by pharmacological inhibition of c-Src, phosphatidylinositol 3-kinase, p38, extracellular-regulated kinase 1/2, and, to a lesser extent, protein kinase C and by the inhibition of mRNA or protein synthesis. In conclusion, this work demonstrates that integrin-mediated cell adhesion and soluble integrin ligands contribute to maintaining COX-2 steady-state levels in endothelial cells by the combined prevention of lysosomal-dependent degradation and the stimulation of mRNA synthesis involving multiple signaling pathways.
Resumo:
O fósforo encontra-se no solo em diversas formas, que variam de acordo com a natureza química dos compostos a que está ligado e à energia de ligação com estes. Assim, a labilidade das formas de P do solo é variável e os métodos de rotina utilizados para avaliação da disponibilidade para as plantas devem ser hábeis em dessorver as formas que têm capacidade de sustentar a absorção das plantas. O objetivo do presente trabalho foi estudar o modo de ação de extratores por meio do acompanhamento das modificações ocorridas nas formas de P do solo após três e treze extrações sucessivas com os métodos Mehlich-1, Mehlich-3 e resina trocadora de ânions (RTA). Foram utilizadas amostras de um Latossolo Vermelho distroférrico típico cultivado sob sistema plantio direto e que recebeu, nos últimos seis anos, doses anuais de 0, 30, 60, 90 e 120 kg ha-1 P2O5, totalizando 0, 180, 360, 540 e 720 kg ha-1 P2O5. Após as extrações sucessivas com os métodos, o solo remanescente foi seco em estufa e realizado o fracionamento químico do P, segundo o fracionamento de Hedley. Os resultados obtidos mostraram que os métodos Mehlich-1 e resina trocadora de ânions atuavam principalmente sobre as frações inorgânicas, sendo parte do P dessorvido por esses extratores readsorvido aos colóides do solo, enquanto o método Mehlich-3 provocava a dessorção de P tanto de formas inorgânicas como de orgânicas. Os métodos Mehlich-1, Mehlich-3 e RTA dessorveram o P de acordo com a labilidade no solo, extraindo, primeiramente, as formas mais lábeis e, posteriormente, as de menor labilidade.
Resumo:
This bimonthly electronic newsletter will provide information and resources on nutrition and health promotion and disease prevention. The Healthy Aging Update is produced for informal and educational purposes only. The newsletter will be distributed electronically and posted on the Department’s website at www.state.ia.us/elderaffairs.
Resumo:
Recent studies demonstrated a role for hypothalamic insulin and leptin action in the regulation of glucose homeostasis. This regulation involves proopiomelanocortin (POMC) neurons because suppression of phosphatidyl inositol 3-kinase (PI3K) signaling in these neurons blunts the acute effects of insulin and leptin on POMC neuronal activity. In the current study, we investigated whether disruption of PI3K signaling in POMC neurons alters normal glucose homeostasis using mouse models designed to both increase and decrease PI3K-mediated signaling in these neurons. We found that deleting p85alpha alone induced resistance to diet-induced obesity. In contrast, deletion of the p110alpha catalytic subunit of PI3K led to increased weight gain and adipose tissue along with reduced energy expenditure. Independent of these effects, increased PI3K activity in POMC neurons improved insulin sensitivity, whereas decreased PI3K signaling resulted in impaired glucose regulation. These studies show that activity of the PI3K pathway in POMC neurons is involved in not only normal energy regulation but also glucose homeostasis.
Resumo:
Newsletter about controlling animal diseases, tips and techniques on how prevention works and the transportation of livestock.
Resumo:
Newsletter about controlling animal diseases, tips and techniques on how prevention works and the transportation of livestock.
Resumo:
The development of cancer is a major problem in immunosuppressed patients, particularly after solid organ transplantation. We have recently shown that calcineurin inhibitors (CNI) used to treat transplant patients may play a critical role in the rapid progression of renal cancer. To examine the intracellular signaling events for CNI-mediated direct tumorigenic pathway(s), we studied the effect of CNI on the activation of proto-oncogenic Ras in human normal renal epithelial cells (REC) and renal cancer cells (786-0 and Caki-1). We found that CNI treatment significantly increased the level of activated GTP-bound form of Ras in these cells. In addition, CNI induced the association of Ras with one of its effector molecules, Raf, but not with Rho and phosphatidylinositol 3-kinase; CNI treatment also promoted the phosphorylation of the Raf kinase inhibitory protein and the downregulation of carabin, all of which may lead to the activation of the Ras-Raf pathway. Blockade of this pathway through either pharmacologic inhibitors or gene-specific small interfering RNA significantly inhibited CNI-mediated augmented proliferation of renal cancer cells. Finally, it was observed that CNI treatment increased the growth of human renal tumors in vivo, and the Ras-Raf pathway is significantly activated in the tumor tissues of CNI-treated mice. Together, targeting the Ras-Raf pathway may prevent the development/progression of renal cancer in CNI-treated patients.
Resumo:
Monthly newsletter for the Iowa Department of Public Health
Resumo:
No Brasil, diversos extratores químicos são utilizados na determinação de Zn disponível para as plantas, destacando-se Mehlich-1 e DTPA. Este trabalho foi realizado com o objetivo de estudar a disponibilidade de Zn em solos de Minas Gerais em função de doses de Zn e de calcário e extratores químicos, utilizando-se milho como planta indicadora. Os extratores estudados foram: (a) Mehlich-1 com filtragem lenta após a extração (M-1f); (b) Mehlich-1 com retirada do sobrenadante após 16 h de repouco (M-1s); (c) Mehlich-3 (M-3); e (d) DTPA. As amostras receberam adubação básica com macro e micronutrientes (-Zn) e cinco doses de Zn na forma de ZnSO4 (0, 2, 4 6 e 8 mg dm-3 de Zn) na ausência ou presença de calagem. Quinze dias após a fertilização, subamostras foram coletadas para a determinação de Zn pelos extratores. Para Mehlich-1, o extrato foi obtido por meio de dois procedimentos: filtragem logo após extração (M-1f) e retirada de alíquota após 16 h (M-1s). O restante do solo foi acondicionado em vasos plásticos, para o cultivo do milho durante 50 dias. A capacidade de extração variou na seguinte ordem: M-1s > M-1f > M-3 > DTPA, para todos os solos, na ausência e na presença de calagem. O M-1s e o M-3 não apresentaram diferenças na capacidade de extração com a calagem, enquanto M-1f e DTPA foram sensíveis à calagem. Os teores de Zn obtidos com todos os extratores correlacionaram-se significativa e negativamente com o teor de argila e a capacidade de campo dos solos, tanto na ausência como na presença de calagem. Os teores obtidos com DTPA apresentaram maior correlação com características de solo na presença de calagem, indicando que esse extrator aumentou sua sensibilidade à capacidade-tampão em valores mais elevados de pH. Todos os extratores mostraram correlações com o conteúdo de Zn na planta; portanto, podem ser utilizados na avaliação da disponibilidade de Zn do solo.
Resumo:
The TRAF-interacting protein (TRIP/TRAIP) is a RING-type E3 ubiquitin ligase inhibiting tumor necrosis factor-α (TNF-α)-mediated NF-κB activation. TRIP ablation results in early embryonic lethality in mice. To investigate TRIP function in epidermis, we examined its expression and the effect of TRIP knockdown (KD) in keratinocytes. TRIP mRNA expression was strongly downregulated in primary human keratinocytes undergoing differentiation triggered by high cell density or high calcium. Short-term phorbol-12-myristate-13-acetate (TPA) treatment or inhibition of phosphatidylinositol-3 kinase signaling in proliferative keratinocytes suppressed TRIP transcription. Inhibition by TPA was protein kinase C dependent. Keratinocytes undergoing KD of TRIP expression by lentiviral short-hairpin RNA (shRNA; T4 and T5) had strongly reduced proliferation rates compared with control shRNA. Cell cycle analysis demonstrated that TRIP-KD caused growth arrest in the G1/S phase. Keratinocytes with TRIP-KD resembled differentiated cells consistent with the augmented expression of differentiation markers keratin 1 and filaggrin. Luciferase-based reporter assays showed no increase in NF-κB activity in TRIP-KD keratinocytes, indicating that NF-κB activity in keratinocytes is not regulated by TRIP. TRIP expression was increased by ∼2-fold in basal cell carcinomas compared with normal skin. These results underline the important role of TRIP in the regulation of cell cycle progression and the tight linkage of its expression to keratinocyte proliferation.
Resumo:
A newsletter produced by the Iowa Law Enforcement Academy.
Resumo:
The Missouri River Flood Recovery newsletter is published by the Iowa Homeland Security and Emergency Management Division in cooperation with members of the Missouri River Recovery Coordination Task Force.
Inflammatory role of ASC in antigen-induced arthritis is independent of caspase-1, NALP-3, and IPAF.
Resumo:
Because IL-1beta plays an important role in inflammation in human and murine arthritis, we investigated the contribution of the inflammasome components ASC, NALP-3, IPAF, and caspase-1 to inflammatory arthritis. We first studied the phenotype of ASC-deficient and wild-type mice during Ag-induced arthritis (AIA). ASC(-/-) mice showed reduced severity of AIA, decreased levels of synovial IL-1beta, and diminished serum amyloid A levels. In contrast, mice deficient in NALP-3, IPAF, or caspase-1 did not show any alteration of joint inflammation, thus indicating that ASC associated effects on AIA are independent of the classical NALP-3 or IPAF inflammasomes. Because ASC is a ubiquitous cytoplasmic protein that has been implicated in multiple cellular processes, we explored other pathways through which ASC may modulate inflammation. Ag-specific proliferation of lymph node and spleen cells from ASC-deficient mice was significantly decreased in vitro, as was the production of IFN-gamma, whereas IL-10 production was enhanced. TCR ligation by anti-CD3 Abs in the presence or absence of anti-CD28 Abs induced a reduction in T cell proliferation in ASC(-/-) T cells compared with wild-type ones. In vivo lymph node cell proliferation was also significantly decreased in ASC(-/-) mice, but no effects on apoptosis were observed either in vitro or in vivo in these mice. In conclusion, these results strongly suggest that ASC modulates joint inflammation in AIA through its effects on cell-mediated immune responses but not via its implication in inflammasome formation.