959 resultados para 1-MATRIX METALLOPROTEINASE
Resumo:
RESUMO:Introdução: Reviu-se o conhecimento epidemiológico, fisiopatológico e clínico atual sobre a doença coronária, da sua génese até ao evento agudo, o Enfarte Agudo do Miocárdio (EAM). Valorizou-se, em especial, a teoria inflamatória da aterosclerose, que foi objeto de grandes desenvolvimentos na última década. Marcadores de instabilidade da placa aterosclerótica coronária: Aprofundou-se o conhecimento da placa aterosclerótica coronária instável. Descreveram-se detalhadamente os biomarcadores clínicos e laboratoriais associados à instabilidade da placa, com particular ênfase nos mecanismos inflamatórios. Objetivos:Estão divididos em dois pontos fundamentais:(1) Estudar em doentes com EAM a relação existente entre as moléculas inflamatórias: Interleucina-6 (IL-6), Fator de Necrose Tumoral-α (TNF-α) e Metaloproteinase de Matriz-3 (MMP3), não usados em contexto clínico, com um marcador inflamatório já em uso clínico: a Proteína C-Reativa ultrassensível (hs-CRP). Avaliar a relação de todas as moléculas inflamatórias com um biomarcador de lesão miocárdica: a Troponina Cardíaca I (cTnI). (2) Avaliar, no mesmo contexto de EAM, a Resposta de Fase Aguda (RFA) . Pretende-se demonstrar o impacto deste fenómeno, com repercussão clínica generalizada, no perfil lipídico e nos biomarcadores inflamatórios dos doentes. Métodos:(1) Estudo observacional prospetivo de doentes admitidos consecutivamente por EAM (grupo EAM) numa única unidade coronária, após exclusão de trauma ou infeção. Doseamento no sangue periférico, na admissão, de IL-6, TNF-α, MMP3, hs-CRP e cTnI. Este último biomarcador foi valorizado também nos valores séricos obtidos 6-9 horas depois. Procedeu-se a correlação linear (coeficiente de Pearson, de Rho-Spearman e determinação do R2) entre os 3 marcadores estudados com os valores de hs-CRP e de cTnI (valores da admissão e 6 a 9 horas após). Efetuou-se o cálculo dos coeficientes de regressão linear múltipla entre cTnI da admissão e cTnI 6-9h após, com o conjunto dos fatores inflamatórios estudados. (2) Estudo caso-controlo entre o grupo EAM e uma população aleatória de doentes seguidos em consulta de cardiologia, após exclusão de eventos cardiovasculares de qualquer território (grupo controlo) e também sem infeção ou trauma. Foram doseados os mesmos marcadores inflamatórios no grupo controlo e no grupo EAM. Nos dois grupos dosearam-se, ainda, as lipoproteínas: Colesterol total (CT), Colesterol HDL (HDLc), com as suas subfrações 2 e 3 (HDL 2 e HDL3), Colesterol LDL oxidado (LDLox),Triglicéridos (TG), Lipoproteína (a) [Lp(a)], Apolipoproteína A1 (ApoA1), Apolipoproteína B (ApoB) e Apolipoproteína E (ApoE). Definiram-se, em cada grupo, os dados demográficos, fatores de risco clássicos, terapêutica cardiovascular e o uso de anti-inflamatórios. Procedeu-se a análise multivariada em relação aos dados demográficos, fatores de risco e à terapêutica basal. Compararam-se as distribuições destas mesmas caraterísticas entre os dois grupos, assim como os valores séricos respetivos para as lipoproteínas estudadas. Procedeu-se à correlação entre as moléculas inflamatórias e as lipoproteínas, para todos os doentes estudados. Encontraram-se os coeficientes de regressão linear múltipla entre cada marcador inflamatório e o conjunto das moléculas lipídicas, por grupo. Finalmente, efetuou-se a comparação estatística entre os marcadores inflamatórios do grupo controlo e os marcadores inflamatórios do grupo EAM. Resultados: (1) Correlações encontradas, respetivamente, Pearson, Rho-Spearman e regressão-R2: IL-6/hs-CRP 0,549, p<0,001; 0,429, p=0,001; 0,302, p<0,001; MMP 3/hsCRP 0,325, p=0,014; 0,171, p=0,202; 0,106, p=0,014; TNF-α/hs-CRP 0,261, p=0,050; 0,315, p=0,017; 0,068, p=0.050; IL-6/cTnI admissão 0,486, p<0,001; 0,483, p<0,001; 0,236, p<0,001; MMP3/cTnI admissão 0,218, p=0,103; 0,146, p=0,278; 0,048, p=0,103; TNF-α/cTnI admissão 0,444, p=0,001; 0,380, p=0,004; 0,197, p=0,001; IL-6/cTnI 6-9h 0,676, p<0,001; 0,623, p<0,001; 0,456, p<0,01; MMP3/cTnI 6-9h 0,524, p=0,001; 0,149, p=0,270; 0,275, p<0,001; TNF-α/cTnI 6-9h 0,428, p=0,001, 0,452, p<0,001, 0,183, p<0,001. A regressão linear múltipla cTnI admissão/marcadores inflamatórios produziu: (R=0,638, R2=0,407) p<0,001 e cTnI 6-9h/marcadores inflamatórios (R=0,780, R2=0,609) p<0,001. (2) Significância da análise multivariada para idade (p=0,029), IMC>30 (p=0.070), AAS (p=0,040) e grupo (p=0,002). Diferenças importantes entre as distribuições dos dados basais entre os dois grupos (grupo controlo vs EAM): idade (47,95±11,55 vs 68,53±2,70 anos) p<0.001; sexo feminino (18,18 vs 22,80%) p=0,076; diabetes mellitus (9,09% vs 36,84%) p=0,012; AAS (18,18 vs 66,66%) p<0,001; clopidogrel (4,54% vs 66,66%) p=0,033; estatinas (31,81% vs 66,14%) p=0,078; beta-bloqueadores (18,18% vs 56,14%) p=0,011; anti-inflamatórios (4,54% vs 33,33%) p=0,009. Resultados da comparação entre os dois grupos quanto ao padrão lipídico (média±dp ou mediana/intervalo interquartil, grupo controlo vs EAM): CT (208,45±35,03 vs 171,05±41,63 mg/dl) p<0,001; HDLc (51,50/18,25 vs 42,00/16,00 mg/dl) p=0,007; HDL2 (8,50/3,25 vs 10,00/6,00 mg/dl) p=0,292; HDL3 (41,75±9,82 vs 31,75±9,41 mg/dl) p<0,001; LDLox (70,00/22,0 vs 43,50/21,00 U/L) p<0,001; TG (120,00/112,50 vs 107,00/86,00 mg/dl) p=0,527; Lp(a) (0,51/0,73 vs 0,51/0,50 g/L) p=0,854; ApoA1 (1,38±0,63 vs 1,19±0,21 g/L) p=0,002; ApoB (0,96±0,19 vs 0,78±0,28 g/L) p=0,004; ApoE (38,50/10,00 vs 38,00/17,00 mg/L) p=0,574. Nas correlações lineares entre as variáveis inflamatórias e as variáveis lipídicas para todos os doentes, encontrámos uma relação negativa entre IL-6 e CT, HDLc, HDL3, LDLox, ApoA1 e ApoB. A regressão múltipla marcadores inflamatórios/perfil lipídico (grupo controlo) foi: hs-CRP (R=0,883, R2=0,780) p=0,022; IL-6 (R=0,911, R2=0,830) p=0,007; MMP3 (R=0,498, R2=0,248) p=0,943; TNF-α (R=0,680, R2=0,462) p=0,524. A regressão múltipla marcadores inflamatórios/perfil lipídico (grupo EAM) foi: hs-CRP (R=0,647, R2=0,418) p=0,004; IL-6 (R=0,544, R2=0,300), p=0,073; MMP3 (R=0,539, R2=0,290) p=0,089; TNF-α (R=0,595; R2=0,354) p=0,022. Da comparação entre os marcadores inflamatórios dos dois grupos resultou (mediana/intervalo interquartil, grupo controlo vs EAM): hs-CRP (0,19/0,27 vs 0,42/2,53 mg/dl) p=0,001, IL-6 (4,90/5,48 vs 13,07/26,41 pg/ml) p<0,001, MMP3 (19,70/13,70 vs 10,10/10,40 ng/ml) p<0,001;TNF-α (8,67/6,71 vs 8,26/7,80 pg/dl) p=0,805. Conclusões: (1) Nos doentes com EAM, existe correlação entre as moléculas inflamatórias IL-6, MMP3 e TNF-α, quer com o marcador inflamatório hs-CRP, quer com o marcador de lesão miocárdica cTnI. Esta correlação reforça-se para os valores de cTnI 6-9 horas após admissão, especialmente na correlação múltipla com o grupo dos quatro marcadores inflamatórios. (2) IL-6 está inversamente ligada às lipoproteínas de colesterol; hs-CRP e IL-6 têm excelentes correlações com o perfil lipídico valorizado no seu conjunto. No grupo EAM encontram-se níveis séricos mais reduzidos para as lipoproteínas de colesterol. Para TNF-α não foram encontradas diferenças significativas entre os grupos, as quais foram observadas para a IL-6 e hs-CRP (mais elevadas no grupo EAM). Os valores de MMP3 no grupo controlo estão mais elevados. ABSTRACT: 0,524, p=0,001; 0,149, p=0,270; 0,275, p<0,001; TNF-α/cTnI 6-9h 0,428, p=0,001, 0,452, p<0,001, 0,183, p<0,001. A regressão linear múltipla cTnI admissão/marcadores inflamatórios produziu: (R=0,638, R2=0,407) p<0,001 e cTnI 6-9h/marcadores inflamatórios (R=0,780, R2=0,609) p<0,001. (2) Significância da análise multivariada para idade (p=0,029), IMC>30 (p=0.070), AAS (p=0,040) e grupo (p=0,002). Diferenças importantes entre as distribuições dos dados basais entre os dois grupos (grupo controlo vs EAM): idade (47,95±11,55 vs 68,53±2,70 anos) p<0.001; sexo feminino (18,18 vs 22,80%) p=0,076; diabetes mellitus (9,09% vs 36,84%) p=0,012; AAS (18,18 vs 66,66%) p<0,001; clopidogrel (4,54% vs 66,66%) p=0,033; estatinas (31,81% vs 66,14%) p=0,078; beta-bloqueadores (18,18% vs 56,14%) p=0,011; anti-inflamatórios (4,54% vs 33,33%) p=0,009. Resultados da comparação entre os dois grupos quanto ao padrão lipídico (média±dp ou mediana/intervalo interquartil, grupo controlo vs EAM): CT (208,45±35,03 vs 171,05±41,63 mg/dl) p<0,001; HDLc (51,50/18,25 vs 42,00/16,00 mg/dl) p=0,007; HDL2 (8,50/3,25 vs 10,00/6,00 mg/dl) p=0,292; HDL3 (41,75±9,82 vs 31,75±9,41 mg/dl) p<0,001; LDLox (70,00/22,0 vs 43,50/21,00 U/L) p<0,001; TG (120,00/112,50 vs 107,00/86,00 mg/dl) p=0,527; Lp(a) (0,51/0,73 vs 0,51/0,50 g/L) p=0,854; ApoA1 (1,38±0,63 vs 1,19±0,21 g/L) p=0,002; ApoB (0,96±0,19 vs 0,78±0,28 g/L) p=0,004; ApoE (38,50/10,00 vs 38,00/17,00 mg/L) p=0,574. Nas correlações lineares entre as variáveis inflamatórias e as variáveis lipídicas para todos os doentes, encontrámos uma relação negativa entre IL-6 e CT, HDLc, HDL3, LDLox, ApoA1 e ApoB. A regressão múltipla marcadores inflamatórios/perfil lipídico (grupo controlo) foi: hs-CRP (R=0,883, R2=0,780) p=0,022; IL-6 (R=0,911, R2=0,830) p=0,007; MMP3 (R=0,498, R2=0,248) p=0,943; TNF-α (R=0,680, R2=0,462) p=0,524. A regressão múltipla marcadores inflamatórios/perfil lipídico (grupo EAM) foi: hs-CRP (R=0,647, R2=0,418) p=0,004; IL-6 (R=0,544, R2=0,300), p=0,073; MMP3 (R=0,539, R2=0,290) p=0,089; TNF-α (R=0,595; R2=0,354) p=0,022. Da comparação entre os marcadores inflamatórios dos dois grupos resultou (mediana/intervalo interquartil, grupo controlo vs EAM): hs-CRP (0,19/0,27 vs 0,42/2,53 mg/dl) p=0,001, IL-6 (4,90/5,48 vs 13,07/26,41 pg/ml) p<0,001, MMP3 (19,70/13,70 vs 10,10/10,40 ng/ml) p<0,001;TNF-α (8,67/6,71 vs 8,26/7,80 pg/dl) p=0,805. Conclusões: (1) Nos doentes com EAM, existe correlação entre as moléculas inflamatórias IL-6, MMP3 e TNF-α, quer com o marcador inflamatório hs-CRP, quer com o marcador de lesão miocárdica cTnI. Esta correlação reforça-se para os valores de cTnI 6-9 horas após admissão, especialmente na correlação múltipla com o grupo dos quatro marcadores inflamatórios. (2) IL-6 está inversamente ligada às lipoproteínas de colesterol; hs-CRP e IL-6 têm excelentes correlações com o perfil lipídico valorizado no seu conjunto. No grupo EAM encontram-se níveis séricos mais reduzidos para as lipoproteínas de colesterol. Para TNF-α não foram encontradas diferenças significativas entre os grupos, as quais foram observadas para a IL-6 e hs-CRP (mais elevadas no grupo EAM). Os valores de MMP3 no grupo controlo estão mais elevados. ------------- ABSTRACT: Introduction: We reviewed the epidemiology, pathophysiology and current clinical knowledge about coronary heart disease, from its genesis to the acute myocardial infarction (AMI). The inflammatory theory for atherosclerosis, which has undergone considerable development in the last decade, was especially detailed. Markers of coronary atherosclerotic vulnerable plaque: The clinical and laboratory biomarkers associated with the unstable coronary atherosclerotic plaque vulnerable plaque are detailed. An emphasis was placed on the inflammatory mechanisms. Objectives: They are divided into two fundamental points: (1) To study in AMI patients, the relationship between the inflammatory molecules: Interleukin-6 (IL-6), Tumor Necrosis Factor-α (TNF-α) and Matrix metalloproteinase-3 (MMP3), unused in the clinical setting, with an inflammatory marker in clinical use: ultrasensitive C-reactive protein (hs-CRP), as well as a biomarker of myocardial injury: cardiac troponin I (cTnI). (2) To study, in the context of AMI, the Acute Phase Response (APR). We intend to demonstrate the impact of that clinical relevant phenomenon in the lipid profile and inflammatory biomarkers of our patients. Methods: (1) Prospective observational study of patients consecutively admitted for AMI (AMI group) in a single coronary care unit, after exclusion of trauma or infection. A peripheral assay at admission for IL-6, TNF-α, MMP3, hs-CRP and cTnI was performed. The latter was also valued in assays obtained 6-9 hours after admission. Linear correlation (Pearson's correlation coefficient, Spearman Rho's correlation coefficient and R2 regression) was performed between the three markers studied and the values of hs-CRP and cTnI (on admission and 6-9 hours after admission). Multiple linear regression was also obtained between cTnI on admission and 6-9h after, with all the inflammatory markers studied. (2) Case-control study between the AMI group and a random population of patients from an outpatient cardiology setting (control group). Cardiovascular events of any kind and infection or trauma were excluded in this group. The same inflammatory molecules were assayed in control and AMI groups. The following lipoproteins were also assayed: total cholesterol (TC), HDL cholesterol (HDLc) and subfractions 2 and 3 (HDL2 and HDL 3), oxidized LDL cholesterol (oxLDL), Triglycerides (TG), Lipoprotein (a) [Lp(a)], Apolipoprotein A1 (apoA1), Apolipoprotein B (ApoB) and Apolipoprotein E (ApoE). Demographics, classical risk factors, cardiovascular therapy and the use of anti-inflammatory drugs were appreciated in each group. The authors conducted a multivariate analysis with respect to demographics, risk factors and baseline therapy. The distribution of the same baseline characteristics was compared between the two groups, as well as the lipoprotein serum values. A correlation was performed between each inflammatory molecule and each of the lipoproteins, for all the patients studied. Multiple linear regression was determined between each inflammatory marker and all the lipid molecules per group. Finally, the statistical comparison between the inflammatory markers in the two groups was performed. Results: (1) The correlation coefficients recorded, respectively, Pearson, Spearman's Rho and regression-R2, were: IL-6/hs-CRP 0.549, p <0.001; 0.429, p=0.001; 0.302, p <0.001; MMP 3/hsCRP 0.325, p=0.014; 0.171, p=0.202; 0.106, p=0.014; TNF-α/hs-CRP 0.261, p=0.050; 0.315, p=0.017; 0.068, p=0.050; IL-6/admission cTnI 0.486, p<0.001; 0.483, p<0.001; 0.236, p<0.001; MMP3/admission cTnI 0.218, p=0.103; 0.146, p=0.278; 0.048, p=0.103; TNF-α/admission cTnI 0.444, p=0.001; 0.380, p=0.004; 0.197, p=0.001; IL-6/6-9 h cTnI 0.676, p<0.001; 0.149, p<0.001; 0.456, p <0.01; MMP3/6-9h cTnI 0.428, p=0.001; 0.149, p<0.001; 0.183, p=0.001; TNF-α/6-9 h cTnI 0.676, p<0,001; 0.452, p<0.001; 0.183, p<0,001. The multiple linear regression admission cTnI/inflammatory markers produced: (R=0.638, R2=0.407) p<0.001 and 6-9 h cTnI/inflammatory markers (R=0.780, R2=0.609) p<0.001. (2) Significances of the multivariate analysis were found for age (p=0.029), IMC>30 (p=0.070), Aspirin (p=0.040) and group (p=0.002). Important differences between the baseline data of the two groups (control group vs AMI): age (47.95 ± 11.55 vs 68.53±12.70 years) p<0.001; gender (18.18 vs 22.80%) p=0.076; diabetes mellitus (9.09% vs 36. 84%) p=0.012; Aspirin (18.18 vs. 66.66%) p<0.001; Clopidogrel (4, 54% vs 66.66%) p=0.033; Statins, 31.81% vs 66.14%, p=0.078, beta-blockers 18.18% vs 56.14%, p=0.011; anti-inflammatory drugs (4.54% vs 33.33%) p=0.009. Significant differences in the lipid pattern of the two groups (mean±SD or median/interquartile range, control group vs AMI): TC (208.45±35.03 vs 171.05±41.63 mg/dl) p<0.001; HDLc (51.50/18.25 vs 42.00/16.00 mg/dl) p=0.007; HDL2 (8.50/3.25 vs 10.00/6.00 mg/dl) p=0.292; HDL3 (41.75±9.82 vs 31.75±9.82 mg/dl) p<0.01; oxLDL (70.00/22.0 vs 43.50/21.00 U/L) p <0.001; TG (120.00/112.50 vs 107.00/86.00 mg/dl) p=0.527; Lp(a) (0.51/0.73 vs 0,51/0.50 g/L) p=0.854; apoA1 (1.38±0.63 vs 1.19±0.21 g/L) p=0.002; ApoB (0.96± 0.39 vs 0.78±0.28 g/L) p=0.004; ApoE (38.50/10,00 vs 38.00 /17,00 mg/L) p=0.574. In the linear correlations between inflammatory variables and lipid variables for all patients, we found a negative relationship between IL-6 and TC, HDLc, HDL3, ApoA1 and ApoB. The multiple linear regression inflammatory markers/lipid profile (control group) was: hs-CRP (R= 0.883, R2=0.780) p=0.022; IL6 (R=0.911, R2=0.830) p=0.007; MMP3 (R=0.498, R2=0.248) p=0.943; TNF-α (R=0.680, R2=0.462) p=0.524. For the linear regression inflammatory markers/lipid profile (AMI group) we found: hs-CRP (R=0.647, R2=0.418) p=0.004; IL-6 (R=0.544, R2=0.300) p=0.073; MMP3 (R=0.539, R2 =0.290) p=0.089; TNF-α (R=0.595, R2=0.354) p=0.022. The comparison between inflammatory markers in both groups (median/interquartile range, control group vs AMI) resulted as: hs-CRP (0.19/0.27 vs 0.42/2.53 mg/dl) p=0.001; IL-6 (4.90/5.48 vs 13.07/26.41 pg/ml) p<0.001; MMP3 (19.70/13.70 vs 10.10/10.40 ng/ml) p<0.001; TNF-α (8.67/6.71 vs 8.26/7.80 pg/dl) p=0.805. Conclusions: (1) In AMI patients there is a correlation between the inflammatory molecules IL-6, TNF-α and MMP3 with both the inflammatory marker hs-CRP and the ischemic marker cTnI. This correlation is strengthened for the cTnI at 6-9h post admission, particularly in the multiple linear regression to the four inflammatory markers studied. (2) IL-6 correlates negatively with the cholesterol lipoproteins. Hs-CRP and IL-6 are strongly correlated to the whole lipoprotein profile. AMI patients display reduced serum lipid levels. For the marker TNF-α no significant differences were found between groups, which were observed for IL-6 and hs-CRP (higher in the AMI group). MMP3 values are higher in the control group.
Resumo:
Background: There is currently no identified marker predicting benefit from Bev in patients with breast cancer (pts). We monitored prospectively 6 angiogenesis-related factors in the blood of advanced stage pts treated with a combination of Bev and PLD in a phase II trial of the Swiss Group for Clinical Cancer Research, SAKK.Methods: Pts received PLD (20 mg/m2) and Bev (10 mg/kg) every 2 weeks for a maximum of 12 administrations, followed by Bev monotherapy until progression or severe toxicity. Blood samples were collected at baseline, during treatment and at treatment discontinuation. Enzyme-linked immunosorbent assays (Quantikine, R&DSystems and Reliatech) were used to measure vascular endothelial growth factor (VEGF), placental growth factor (PlGF), matrix metalloproteinase 9 (MMP-9) and soluble VEGF receptors -1, -2 and -3. The natural log-transformed (ln) data for each factor was analyzed by analysis of variance (ANOVA) model to investigate differences between the mean values of the subgroups of interest (where a = 0.05), based on the best tumor response by RECIST.Results: 132 samples were collected in 41 pts. The mean of baseline ln MMP-9 levels was significantly lower in pts with tumor progression than those with tumor response (p=0.0202, log fold change=0.8786) or disease control (p=0.0035, log fold change=0.8427). Higher MMP-9 level was a significant predictor of superior progression free survival (PFS): p=0.0417, hazard ratio=0.574, 95% CI=0.336-0.979. In a multivariate cox proportional hazards model, containing performance status, disease free interval, number of tumor sites, visceral involvement and prior adjuvant chemotherapy, using stepwise regression baseline MMP-9 was still a statistically 117P Table 1. SOLTI-0701* AC01B07* NU07B1* SOR+CAP N=20 PL+CAP N=33 SOR+ GEM/CAP N=23 PL+ GEM/CAP N=27 SOR+PAC N=48 PL+PAC N=46 Baseline characteristics Age, median (range), y 49 (32-72) 53 (30-78 54 (32-69) 57 (31-82) 50 (27-80) 52 (23-74) AJCC stage, n (%) IIIB/IIIC 3 (15) 6 (18) 0 (0) 3 (11) 8 (17) 9 (20) IV 17 (85) 27 (82) 23 (100) 24 (89) 40 (83) 37 (80) Metastatic site, n (%) Non-visceral 3 (15) 6 (18) 7 (30) 6 (22) 9 (19) 17 (37) Visceral 17 (85) 27 (82) 16 (70) 21 (78) 39 (81) 29 (63) Prior metastatic chemo, n (%) 8 (40) 15 (45) 21 (91) 25 (93) - - Efficacy PFS, median, mo 4.3 2.5 3.1 2.6 5.6 5.5 HR (95% CI)_ 0.60 (0.31, 1.14) 0.57 (0.30, 1.09) 0.86 (0.50, 1.45) 1-sided P value_ 0.055 0.044 0.281 Overall survival, median, mo 17.5 16.1 Pending 14.7 18.2 HR (95% CI)_ 0.98 (0.50, 1.89) 1.11 (0.64, 1.94) 1-sided P value_ 0.476 0.352 Safety N=20 N=33 N=22 N=27 N=46 N=46 Tx-emergent Grade 3/4, n (%) 15 (75) 16 (48) 20 (91) 17 (63) 36 (78) 16 (35) Grade 3§ hand-foot skin reaction/ syndrome 8 (40) 5 (15) 8 (36) 0 (0) 14 (30) 2 (4) *Efficacy results based on intent-to-treat population and safety results based on safety population (pts who received study drug[s]); _Cox regression within each subgroup; _log-rank test within each subgroup; §maximum toxicity grade for hand-foot skin reaction/syndrome; AJCC, American Joint Committee on Cancer mittedabstractsª The Author 2011. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com Downloaded from annonc.oxfordjournals.org at Bibliotheque Cantonale et Universitaire on June 6, 2011 significant factor (p=0.0266). The results of the other measured factors were presented elsewhere.Conclusions: Higher levels of MMP-9 could predict tumor response and superior PFSin pts treated with a combination of Bev and PLD. These exploratory results justify further investigations of MMP-9 in pts treated with Bev combinations in order to assess its role as a prognostic and predictive factor.Disclosure: K. Zaman: Participation in advisory board of Roche; partial sponsoring ofthe study by Roche (the main sponsor was the Swiss Federation against Cancer (Oncosuisse)). B. Thu¨rlimann: stock of Roche; Research grants from Roche. R. vonMoos: Participant of Advisory Board and Speaker honoraria
Resumo:
Phosphodiesterases (PDEs) are responsible for the breakdown of intracellular cyclic nucleotides, from which PDE4 are the major cyclic AMP metabolizing isoenzymes found in inflammatory and immune cells. This generated greatest interest on PDE4 as a potential target to treat lung inflammatory diseases. For example, cigarette smoke-induced neutrophilia in BAL was dose and time dependently reduced by cilomilast. Beside the undesired side effects associated with the first generation of PDE4 inhibitors, the second generation of selective inhibitors such as cilomilast and roflumilast showed clinical efficacy in asthma and chronic obstrutive pulmonary diseases trials, thus re-enhancing the interest on these classes of compounds. However, the ability of PDE4 inhibitors to prevent or modulate the airway remodelling remains relatively unexplored. We demonstrated that selective PDE4 inhibitor RP 73-401 reduced matrix metalloproteinase (MMP)-9 activity and TGF-beta1 release during LPS-induced lung injury in mice and that CI-1044 inhibited the production of MMP-1 and MMP-2 from human lung fibroblasts stimulated by pro-inflammatory cytokines. Since inflammatory diseases of the bronchial airways are associated with destruction of normal tissue structure, our data suggest a therapeutic benefit for PDE4 inhibitors in tissue remodelling associated with chronic lung diseases.
Resumo:
Metalloproteinases are abundant enzymes in crotaline and viperine snake venoms. They are relevant in the pathophysiology of envenomation, being responsible for local and systemic hemorrhage frequently observed in the victims. Snake venom metalloproteinases (SVMP) are zinc-dependent enzymes of varying molecular weights having multidomain organization. Some SVMP comprise only the proteinase domain, whereas others also contain a disintegrin-like domain, cysteine-rich, and lectin domains. They have strong structural similarities with both mammalian matrix metalloproteinases (MMP) and members of ADAMs (a disintegrin and metalloproteinase) group. Besides hemorrhage, snake venom metalloproteinase induce local myonecrosis, skin damage, and inflammatory reaction in experimental models. Local inflammation is an important characteristic of snakebite envenomations inflicted by viperine and crotaline snake species. Thus, in the recent years there is a growing effort to understand the mechanisms responsible for SVMP-induced inflammatory reaction and the structural determinants of this effect. This short review focuses the inflammatory effects evoked by SVMP.
Resumo:
The aims of this study were to check whether different biomarkers of inflammatory, apoptotic, immunological or lipid pathways had altered their expression in the occluded popliteal artery (OPA) compared with the internal mammary artery (IMA) and femoral vein (FV) and to examine whether glycemic control influenced the expression of these genes. The study included 20 patients with advanced atherosclerosis and type 2 diabetes mellitus, 15 of whom had peripheral arterial occlusive disease (PAOD), from whom samples of OPA and FV were collected. PAOD patients were classified based on their HbA1c as well (HbA1c ≤ 6.5) or poorly (HbA1c > 6.5) controlled patients. Controls for arteries without atherosclerosis comprised 5 IMA from patients with ischemic cardiomyopathy (ICM). mRNA, protein expression and histological studies were analyzed in IMA, OPA and FV. After analyzing 46 genes, OPA showed higher expression levels than IMA or FV for genes involved in thrombosis (F3), apoptosis (MMP2, MMP9, TIMP1 and TIM3), lipid metabolism (LRP1 and NDUFA), immune response (TLR2) and monocytes adhesion (CD83). Remarkably, MMP-9 expression was lower in OPA from well-controlled patients. In FV from diabetic patients with HbA1c ≤6.5, gene expression levels of BCL2, CDKN1A, COX2, NDUFA and SREBP2 were higher than in FV from those with HbA1c >6.5. The atherosclerotic process in OPA from diabetic patients was associated with high expression levels of inflammatory, lipid metabolism and apoptotic biomarkers. The degree of glycemic control was associated with gene expression markers of apoptosis, lipid metabolism and antioxidants in FV. However, the effect of glycemic control on pro-atherosclerotic gene expression was very low in arteries with established atherosclerosis.
Resumo:
The aim of the present study was to identify specific markers that mirror liver fibrosis progression as an alternative to biopsy when biopsy is contraindicated, especially in children. After liver biopsies were performed, serum samples from 30 hepatitis C virus (HCV) paediatric patients (8-14 years) were analysed and compared with samples from 30 healthy subjects. All subjects were tested for the presence of serum anti-HCV antibodies. Direct biomarkers for liver fibrosis, including transforming growth factor-β1, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), hyaluronic acid (HA), procollagen type III amino-terminal peptide (PIIINP) and osteopontin (OPN), were measured. The indirect biomarkers aspartate and alanine aminotransferases, albumin and bilirubin were also tested. The results revealed a significant increase in the serum marker levels in HCV-infected children compared with the healthy group, whereas albumin levels exhibited a significant decrease. Significantly higher levels of PIIINP, TIMP-1, OPN and HA were detected in HCV-infected children with moderate to severe fibrosis compared with children with mild fibrosis (p < 0.05). The diagnostic accuracy of these direct biomarkers, represented by sensitivity, specificity and positive predictive value, emphasises the utility of PIIINP, TIMP-1, OPN and HA as indicators of liver fibrosis among HCV-infected children.
Resumo:
Chronic periaortitis (CP) is an uncommon inflammatory disease which primarily involves the infrarenal portion of the abdominal aorta. However, CP should be regarded as a generalized disease with three different pathophysiological entities, namely idiopathic retroperitoneal fibrosis (RPF), inflammatory abdominal aortic aneurysm and perianeurysmal RPF. These entities share similar histopathological characteristics and finally will lead to fibrosis of the retroperitoneal space. Beside fibrosis, an infiltrate with variable chronic inflammatory cell is present. The majority of these cells are lymphocytes and macrophages as well as vascular endothelial cells, most of which are HLA-DR-positive. B and T cells are present with a majority of T cells of the T-helper phenotype. Cytokine gene expression analysis shows the presence of interleukin (IL)-1alpha, IL-2, IL-4, interferon-gamma and IL-2 receptors. Adhesion molecules such as E-selectin, intercellular adhesion molecule-1 and the vascular cell adhesion molecule-1 were also found in aortic tissue, and may play a significant role in CP pathophysiology. Although CP pathogenesis remains unknown, an exaggerated inflammatory response to advanced atherosclerosis (ATS) has been postulated to be the main process. Autoimmunity has also been proposed as a contributing factor based on immunohistochemical studies. The suspected allergen may be a component of ceroid, which is elaborated within the atheroma. We review the pathogenesis and the pathophysiology of CP, and its potential links with ATS. Clinically relevant issues are summarized in each section with regard to the current working hypothesis of this complex inflammatory disease.
Resumo:
Anti-angiogenic therapies are currently in cancer clinical trials, but to date there are no established tests for evaluating the angiogenic status of a patient. We measured 11 circulating angiogenesis-associated molecules in cancer patients before and after local treatment. The purpose of our study was to screen for possible relationships among the different molecules and between individual molecules and tumor burden. We measured VEGF-A, PlGF, SCF, MMP-9, EDB+ -fibronectin, sVEGFR-2, sVEGFR-1, salphaVbeta3, sTie-2, IL-8 and CRP in the blood of 22 healthy volunteers, 17 early breast, 17 early colorectal, and 8 advanced sarcoma/melanoma cancer patients. Breast cancer patients had elevated levels of VEGF-A and sTie-2, colorectal cancer patients of VEGF-A, MMP-9, sTie-2, IL-8 and CRP, and melanoma/sarcoma patients of sVEGFR-1. salphaVbeta3 was decreased in colorectal cancer patients. A correlation between VEGF-A and MMP-9 was found. After tumor removal, MMP-9 and salphaVbeta3 significantly decreased in breast and CRP in colorectal cancer, whereas sVEGFR-1 increased in colorectal cancer patients. In sarcoma/melanoma patients treated regionally with TNF and chemotherapy we observed a rise in VEGF-A, SCF, VEGFR-2, MMP-9, Tie-2 and CRP, a correlation between CRP and IL-8, and a decreased in sVEGFR-1 levels. In conclusion, among all factors measured, only VEGF-A and MMP-9 consistently correlated to each other, elevated CRP levels were associated with tumor burden, whereas sVEGF-R1 increased after tumor removal in colorectal cancer. Treatment with chemotherapy and TNF induced changes consistent with an angiogenic switch. These results warrant a prospective study to compare the effect of surgical tumor removal vs. chemotherapy on some of these markers and to evaluate their prognostic/predictive value.
Resumo:
Background: The anti-angiogenic drug, bevacizumab (Bv), is currently used in the treatment of different malignancies including breast cancer. Many angiogenesis-associated molecules are found in the circulation of cancer patients. Until now, there are no prognostic or predictive factors identified in breast cancer patients treated with Bv. We present here the first results of the prospective monitoring of 6 angiogenesis-related molecules in the peripheral blood of breast cancer patients treated with a combination of Bv and PLD in the phase II trial, SAKK 24/06. Methods: Patients were treated with PLD (20 mg/m2) and Bv (10 mg/kg) on days 1 and 15 of each 4-week cycle for a maximum of 6 cycles, followed by Bv monotherapy maintenance (10 mg/m2 q2 weeks) until progression or severe toxicity. Plasma and serum samples were collected at baseline, after 2 months of therapy, then every 3 months and at treatment discontinuation. Enzyme-linked immunosorbent assays (Quantikine, R&D Systems and Reliatech) were used to measure the expression levels of human vascular endothelial growth factor (hVEGF), placental growth factor (hPlGF), matrix metalloproteinase 9 (hMMP9) and soluble VEGF receptors hsVEGFR-1, hsVEGFR-2 and hsVEGFR-3. The log-transformed data (to reduce the skewness) for each marker was analyzed using an analysis of variance (ANOVA) model to determine if there was a difference between the mean of the subgroups of interest (where α = 0.05). The untransformed data was also analyzed in the same manner as a "sensitivity" check. Results: 132 blood samples were collected in 41 out of 43 enrolled patients. Baseline levels of the molecules were compared to disease status according to RECIST. There was a statistically significant difference in the mean of the log-transformed levels of hMMP9 between responders [CR+PR] versus the mean in patients with PD (p-value=0.0004, log fold change=0.7536), and between patients with disease control [CR+PR+SD] and those with PD (p-value=<0.0001, log fold change=0.81559), with the log-transformed level of hMMP9 being higher for the responder group. The mean of the log-transformed levels of hsVEGFR-1 was statistically significantly different between patients with disease control [CR+PR+SD] and those with PD (p-value=0.0068, log fold change=-0.6089), where the log-transformed level of hsVEGFR-1 was lower for the responder group. The log-transformed level of hMMP9 at baseline was identified as a significant prognostic factor in terms of progression free survival (PFS): p-value=0.0417, hazard ratio (HR)=0.574 with a corresponding 95% confidence interval (0.336 - 0.979)). No strong correlation was shown either between the log-transformed levels of hsVEGF, hPlGF, hsVEGFR-2 or hsVEGFR-3 and clinical response or the occurrence of severe toxicity, or between the levels of the different molecules. Conclusions: Our results suggest that baseline plasma level of the matrix metalloproteinase, hMMP9, could predict tumor response and PFS in patients treated with a combination of Bv and PLD. These data justify further investigation in breast cancer patients treated with anti-angiogenic therapy.
Resumo:
Doxorubicin (DOX) is a potent available antitumor agent; however, its clinical use is limited because of its cardiotoxicity. Cell death is a key component in DOX-induced cardiotoxicity, but its mechanisms are elusive. Here, we explore the role of superoxide, nitric oxide (NO), and peroxynitrite in DOX-induced cell death using both in vivo and in vitro models of cardiotoxicity. Western blot analysis, real-time PCR, immunohistochemistry, flow cytometry, fluorescent microscopy, and biochemical assays were used to determine the markers of apoptosis/necrosis and sources of NO and superoxide and their production. Left ventricular function was measured by a pressure-volume system. We demonstrated increases in myocardial apoptosis (caspase-3 cleavage/activity, cytochrome c release, and TUNEL), inducible NO synthase (iNOS) expression, mitochondrial superoxide generation, 3-nitrotyrosine (NT) formation, matrix metalloproteinase (MMP)-2/MMP-9 gene expression, poly(ADP-ribose) polymerase activation [without major changes in NAD(P)H oxidase isoform 1, NAD(P)H oxidase isoform 2, p22(phox), p40(phox), p47(phox), p67(phox), xanthine oxidase, endothelial NOS, and neuronal NOS expression] and decreases in myocardial contractility, catalase, and glutathione peroxidase activities 5 days after DOX treatment to mice. All these effects of DOX were markedly attenuated by peroxynitrite scavengers. Doxorubicin dose dependently increased mitochondrial superoxide and NT generation and apoptosis/necrosis in cardiac-derived H9c2 cells. DOX- or peroxynitrite-induced apoptosis/necrosis positively correlated with intracellular NT formation and could be abolished by peroxynitrite scavengers. DOX-induced cell death and NT formation were also attenuated by selective iNOS inhibitors or in iNOS knockout mice. Various NO donors when coadministered with DOX but not alone dramatically enhanced DOX-induced cell death with concomitant increased NT formation. DOX-induced cell death was also attenuated by cell-permeable SOD but not by cell-permeable catalase, the xanthine oxidase inhibitor allopurinol, or the NADPH oxidase inhibitors apocynine or diphenylene iodonium. Thus, peroxynitrite is a major trigger of DOX-induced cell death both in vivo and in vivo, and the modulation of the pathways leading to its generation or its effective neutralization can be of significant therapeutic benefit.
Resumo:
BACKGROUND: Human saphenous vein grafts are one of the salvage bypass conduits when endovascular procedures are not feasible or fail. Understanding the remodeling process that venous grafts undergo during exposure to arterial conditions is crucial to improve their patency, which is often compromised by intimal hyperplasia. The precise role of hemodynamic forces such as shear stress and arterial pressure in this remodeling is not fully characterized. The aim of this study was to determine the involvement of arterial shear stress and pressure on vein wall remodeling and to unravel the underlying molecular mechanisms. METHODS: An ex vivo vein support system was modified for chronic (up to 1 week), pulsatile perfusion of human saphenous veins under controlled conditions that permitted the separate control of arterial shear stress and different arterial pressure (7 mm Hg or 70 mm Hg). RESULTS: Veins perfused for 7 days under high pressure (70 mm Hg) underwent significant development of a neointima compared with veins exposed to low pressure (7 mm Hg). These structural changes were associated with altered expression of several molecular markers. Exposure to an arterial shear stress under low pressure increased the expression of matrix metalloproteinase (MMP)-2 and MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1 at the transcript, protein, and activity levels. This increase was enhanced by high pressure, which also increased TIMP-2 protein expression despite decreased levels of the cognate transcript. In contrast, the expression of plasminogen activator inhibitor-1 increased with shear stress but was not modified by pressure. Levels of the venous marker Eph-B4 were decreased under arterial shear stress, and levels of the arterial marker Ephrin-B2 were downregulated under high-pressure conditions. CONCLUSIONS: This model is a valuable tool to identify the role of hemodynamic forces and to decipher the molecular mechanisms leading to failure of human saphenous vein grafts. Under ex vivo conditions, arterial perfusion is sufficient to activate the remodeling of human veins, a change that is associated with the loss of specific vein markers. Elevation of pressure generates intimal hyperplasia, even though veins do not acquire arterial markers. CLINICAL RELEVANCE: The pathological remodeling of the venous wall, which leads to stenosis and ultimately graft failure, is the main limiting factor of human saphenous vein graft bypass. This remodeling is due to the hemodynamic adaptation of the vein to the arterial environment and cannot be prevented by conventional therapy. To develop a more targeted therapy, a better understanding of the molecular mechanisms involved in intimal hyperplasia is essential, which requires the development of ex vivo models of chronic perfusion of human veins.
Resumo:
OBJECTIVE: Endocannabinoid levels are elevated in human and mouse atherosclerosis, but their causal role is not well understood. Therefore, we studied the involvement of fatty acid amide hydrolase (FAAH) deficiency, the major enzyme responsible for endocannabinoid anandamide degradation, in atherosclerotic plaque vulnerability. METHODS AND RESULTS: We assessed atherosclerosis in apolipoprotein E-deficient (ApoE(-/-)) and ApoE(-/-)FAAH(-/-) mice. Before and after 5, 10, and 15 weeks on high-cholesterol diet, we analyzed weight, serum cholesterol, and endocannabinoid levels, and atherosclerotic lesions in thoracoabdominal aortas and aortic sinuses. Serum levels of FAAH substrates anandamide, palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) were 1.4- to 2-fold higher in case of FAAH deficiency. ApoE(-/-)FAAH(-/-) mice had smaller plaques with significantly lower content of smooth muscle cells, increased matrix metalloproteinase-9 expression, and neutrophil content. Circulating and bone marrow neutrophil counts were comparable between both genotypes, whereas CXC ligand1 levels were locally elevated in aortas of FAAH-deficient mice. We observed enhanced recruitment of neutrophils, but not monocytes, to large arteries of ApoE(-/-) mice treated with FAAH inhibitor URB597. Spleens of ApoE(-/-)FAAH(-/-) mice had reduced CD4+FoxP3+regulatory T-cell content, and in vitro stimulation of splenocytes revealed significantly elevated interferon-γ and tumor necrosis factor-α production in case of FAAH deficiency. CONCLUSIONS: Increased anandamide and related FAAH substrate levels are associated with the development of smaller atherosclerotic plaques with high neutrophil content, accompanied by an increased proinflammatory immune response.
Resumo:
PURPOSE: Abdominal aortic aneurysms (AAAs) expand because of aortic wall destruction. Enrichment in Vascular Smooth Muscle Cells (VSMCs) stabilizes expanding AAAs in rats. Mesenchymal Stem Cells (MSCs) can differentiate into VSMCs. We have tested the hypothesis that bone marrow-derived MSCs (BM-MSCs) stabilizes AAAs in a rat model. MATERIAL AND METHODS: Rat Fischer 344 BM-MSCs were isolated by plastic adhesion and seeded endovascularly in experimental AAAs using xenograft obtained from guinea pig. Culture medium without cells was used as control group. The main criteria was the variation of the aortic diameter at one week and four weeks. We evaluated the impact of cells seeding on inflammatory response by immunohistochemistry combined with RT-PCR on MMP9 and TIMP1 at one week. We evaluated the healing process by immunohistochemistry at 4 weeks. RESULTS: The endovascular seeding of BM-MSCs decreased AAA diameter expansion more powerfully than VSMCs or culture medium infusion (6.5% ± 9.7, 25.5% ± 17.2 and 53.4% ± 14.4; p = .007, respectively). This result was sustained at 4 weeks. BM-MSCs decreased expression of MMP-9 and infiltration by macrophages (4.7 ± 2.3 vs. 14.6 ± 6.4 mm(2) respectively; p = .015), increased Tissue Inhibitor Metallo Proteinase-1 (TIMP-1), compared to culture medium infusion. BM-MSCs induced formation of a neo-aortic tissue rich in SM-alpha active positive cells (22.2 ± 2.7 vs. 115.6 ± 30.4 cells/surface units, p = .007) surrounded by a dense collagen and elastin network covered by luminal endothelial cells. CONCLUSIONS: We have shown in this rat model of AAA that BM-MSCs exert a specialized function in arterial regeneration that transcends that of mature mesenchymal cells. Our observation identifies a population of cells easy to isolate and to expand for therapeutic interventions based on catheter-driven cell therapy.
Water-filtered infrared-A radiation (wIRA) is not implicated in cellular degeneration of human skin.
Resumo:
BACKGROUND: Excessive exposure to solar ultraviolet radiation is involved in the complex biologic process of cutaneous aging. Wavelengths in the ultraviolet-A and -B range (UV-A and UV-B) have been shown to be responsible for the induction of proteases, e. g. the collagenase matrix metalloproteinase 1 (MMP-1), which are related to cell aging. As devices emitting longer wavelengths are widely used in therapeutic and cosmetic interventions and as the induction of MMP-1 by water-filtered infrared-A (wIRA) had been discussed, it was of interest to assess effects of wIRA on the cellular and molecular level known to be possibly involved in cutaneous degeneration. OBJECTIVES: Investigation of the biological implications of widely used water-filtered infrared-A (wIRA) radiators for clinical use on human skin fibroblasts assessed by MMP-1 gene expression (MMP-1 messenger ribonucleic acid (mRNA) expression).Methods: Human skin fibroblasts were irradiated with approximately 88% wIRA (780-1400 nm) and 12% red light (RL, 665-780 nm) with 380 mW/cm(2) wIRA(+RL) (333 mW/cm(2) wIRA) on the one hand and for comparison with UV-A (330-400 nm, mainly UV-A1) and a small amount of blue light (BL, 400-450 nm) with 28 mW/cm(2) UV-A(+BL) on the other hand. Survival curves were established by colony forming ability after single exposures between 15 minutes and 8 hours to wIRA(+RL) (340-10880 J/cm(2) wIRA(+RL), 300-9600 J/cm(2) wIRA) or 15-45 minutes to UV-A(+BL) (25-75 J/cm(2) UV-A(+BL)). Both conventional Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) and quantitative real-time RT-PCR techniques were used to determine the induction of MMP-1 mRNA at two physiologic temperatures for skin fibroblasts (30 degrees C and 37 degrees C) in single exposure regimens (15-60 minutes wIRA(+RL), 340-1360 J/cm(2) wIRA(+RL), 300-1200 J/cm(2) wIRA; 30 minutes UV-A(+BL), 50 J/cm(2) UV-A(+BL)) and in addition at 30 degrees C in a repeated exposure protocol (up to 10 times 15 minutes wIRA(+RL) with 340 J/cm(2) wIRA(+RL), 300 J/cm(2) wIRA at each time). RESULTS: Single exposure of cultured human dermal fibroblasts to UV-A(+BL) radiation yielded a very high increase in MMP-1 mRNA expression (11 +/-1 fold expression for RT-PCR and 76 +/-2 fold expression for real-time RT-PCR both at 30 degrees C, 75 +/-1 fold expression for real-time RT-PCR at 37 degrees C) and a dose-dependent decrease in cell survival. In contrast, wIRA(+RL) did not produce cell death and did not induce a systematic increase in MMP-1 mRNA expression (less than twofold expression, within the laboratory range of fluctuation) detectable with the sensitive methods applied. Additionally, repeated exposure of human skin fibroblasts to wIRA(+RL) did not induce MMP-1 mRNA expression systematically (less than twofold expression by up to 10 consecutive wIRA(+RL) exposures and analysis with real-time RT-PCR). CONCLUSIONS: wIRA(+RL) even at the investigated disproportionally high irradiances does not induce cell death or a systematic increase of MMP-1 mRNA expression, both of which can be easily induced by UV-A radiation. Furthermore, these results support previous findings of in vivo investigations on collagenase induction by UV-A but not wIRA and show that infrared-A with appropriate irradiances does not seem to be involved in MMP-1 mediated photoaging of the skin. As suggested by previously published studies wIRA could even be implicated in a protective manner.
Resumo:
Intimal hyperplasia (IH) is the major cause of stenosis of vein grafts. Drugs such as statins prevent stenosis, but their systemic administration has limited effects. We developed a hyaluronic acid hydrogel matrix, which ensures a controlled release of atorvastatin (ATV) at the site of injury. The release kinetics demonstrated that 100% of ATV was released over 10 hours, independent of the loading concentration of the hydrogel. We investigated the effects of such a delivery on primary vascular smooth muscle cells isolated from human veins. ATV decreased the proliferation, migration, and passage of human smooth muscle cells (HSMCs) across a matrix barrier in a similar dose-dependent (5-10 µM) and time-dependent manner (24-72 hours), whether the drug was directly added to the culture medium or released from the hydrogel. Expression analysis of genes known to be involved in the development of IH demonstrated that the transcripts of both the gap junction protein connexin43 (Cx43) and plasminogen activator inhibitor-1 (PAI-1) were decreased after a 24-48-hour exposure to the hydrogel loaded with ATV, whereas the transcripts of the heme oxygenase (HO-1) and the inhibitor of tissue plasminogen activator were increased. At the protein level, Cx43, PAI-1, and metalloproteinase-9 expression were decreased, whereas HO-1 was upregulated in the presence of ATV. The data demonstrate that ATV released from a hydrogel has effects on HSMCs similar to the drug being freely dissolved in the environment.