909 resultados para 1 sigma standard deviation for the average
Resumo:
Standards reduce production costs and increase the value of products to consumers; ultimately they significantly contribute to economic development. Standards however entail risks of anti-competitive abuse. After the adoption of a standard, the elimination of competition between technologies can lead to consumer harm. Fair, reasonable, nondiscriminatory (FRAND) commitments made by patent holders have been used to mitigate that risk. The European Commission recognises the importance of standards, but European Union competition policy is still seeking to identify well-targeted and efficient enforcement rules.
Resumo:
In the last years masses of ice, about 5 km long, have been protruding from the lowest part of an advancing glacier margin of the Kötlujökull in Southern Iceland. In the summer of 1983, they appeared as sediment-covered lobes, 10-60 m long, bordering the glacier rnargin like agarland. 1 to 3 push-rnoraines without ice core, rnostly sickle-shaped, occured first in the frontal parts of the lobes: behind thern came several ice-cored moraines with heights of up to several metres. The active ice in front of the precipice of the glacier is called the "glacier-foot" in this paper. The digging out of 9 lobes and the measuring of the advance of 19 lobes showed that in most cases this glacierfoot had split up at its distal end into several plate- or stem-shaped pieces of ice which were situated one upon the other, separated by moraine deposits and proceeding irregularly into the foreland at the rate of several mm/h, The sometimes different rate of advance in the same lobe and different rates of advanee in adjoining lobes (some being entirely inactive) point to a type of rnovement which is independent of the general advance of the glacier. Research in the winter of 1983/84 showed less activity in 3 examined lobes, but the activity had not ceased. The advancement of the lower parts of the glacier-foot into and across the sands of the foreland implies the following genesis of pushmoraines: Shoving off a plate of sand, folding it and pushing it over the foreland at average rates of up to 7,2 mm/h, according to the investigations in thc summer of 1983. At a certain stage of the folding process, new folds begin to develop in front of the old, and the old folds are shifted onto the backslope of thc folds in front of them until they are completely unired. In this way, "püe-moraines" arise, which become higher and higher. They include two or more folds declining towards the glacier. Systems of small moraines presumably of the same genesis occur on old moraine areas in front of the Kötlujökull. The possible cause of formation of a glacier-foot is discussed, and the moraines of the Kötlujökull are compared with certain pleistocene push-moraines.
Resumo:
Modeling natural phenomena from 3D information enhances our understanding of the environment. Dense 3D point clouds are increasingly used as highly detailed input datasets. In addition to the capturing techniques of point clouds with LiDAR, low-cost sensors have been released in the last few years providing access to new research fields and facilitating 3D data acquisition for a broader range of applications. This letter presents an analysis of different speleothem features using 3D point clouds acquired with the gaming device Microsoft® Kinect. We compare the Kinect sensor with terrestrial LiDAR reference measurements using the KinFu pipeline for capturing complete 3D objects (< 4m**3). The results demonstrate the suitability of the Kinect to capture flowstone walls and to derive morphometric parameters of cave features. Although the chosen capturing strategy (KinFu) reveals a high correlation (R2=0.92) of stalagmite morphometry along the vertical object axis, a systematic overestimation (22% for radii and 44% for volume) is found. The comparison of flowstone wall datasets predominantly shows low differences (mean of 1 mm with 7 mm standard deviation) of the order of the Kinect depth precision. For both objects the major differences occur at strongly varying and curved surface structures (e.g. with fine concave parts).
Resumo:
At Sleipner, CO2 is being separated from natural gas and injected into an underground saline aquifer for environmental purposes. Uncertainty in the aquifer temperature leads to uncertainty in the in situ density of CO2. In this study, gravity measurements were made over the injection site in 2002 and 2005 on top of 30 concrete benchmarks on the seafloor in order to constrain the in situ CO2 density. The gravity measurements have a repeatability of 4.3 µGal for 2003 and 3.5 µGal for 2005. The resulting time-lapse uncertainty is 5.3 µGal. Unexpected benchmark motions due to local sediment scouring contribute to the uncertainty. Forward gravity models are calculated based on both 3D seismic data and reservoir simulation models. The time-lapse gravity observations best fit a high temperature forward model based on the time-lapse 3D seismics, suggesting that the average in situ CO2 density is about to 530kg/m**3. Uncertainty in determining the average density is estimated to be ±65 kg/m**3 (95% confidence), however, this does not include uncertainties in the modeling. Additional seismic surveys and future gravity measurements will put better constraints on the CO2 density and continue to map out the CO2 flow.
Resumo:
Mode of access: Internet.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Background: In clinical trials, at the group level, results are usually reported as mean and standard deviation of the change in score, which is not meaningful for most readers. Objective: To determine the minimal clinically important improvement (MCII) of pain, patient's global assessment of disease activity, and functional impairment in patients with knee and hip osteoarthritis (OA). Methods: A prospective multicentre 4 week cohort study involving 1362 outpatients with knee or hip OA was carried out. Data on assessment of pain and patient's global assessment, measured on visual analogue scales, and functional impairment, measured on the Western Ontario McMaster Universities Osteoarthritis Index (WOMAC) function subscale, were collected at baseline and final visits. Patients assessed their response to treatment on a five point Likert scale at the final visit. An anchoring method based on the patient's opinion was used. The MCII was estimated in a subgroup of 814 patients ( 603 with knee OA, 211 with hip OA). Results: For knee and hip OA, MCII for absolute ( and relative) changes were, respectively, ( a) -19.9 mm (-40.8%) and -15.3 mm (-32.0%) for pain; ( b) -18.3 mm ( - 39.0%) and -15.2 mm ( -32.6%) for patient's global assessment; ( c) -9.1 ( -26.0%) and -7.9 ( -21.1%) for WOMAC function subscale score. The MCII is affected by the initial degree of severity of the symptoms but not by age, disease duration, or sex. Conclusion: Using criteria such as MCII in clinical trials would provide meaningful information which would help in interpreting the results by expressing them as a proportion of improved patients.
Resumo:
Purpose: This study was conducted to devise a new individual calibration method to enhance MTI accelerometer estimation of free-living level walking speed. Method: Five female and five male middle-aged adults walked 400 m at 3.5, 4.5, and 5.5 km(.)h(-1), and 800 in at 6.5 km(.)h(-1) on an outdoor track, following a continuous protocol. Lap speed was controlled by a global positioning system (GPS) monitor. MTI counts-to-speed calibration equations were derived for each trial, for each subject for four such trials with each of four MTI, for each subject for the average MTI. and for the pooled data. Standard errors of the estimate (SEE) with and without individual calibration were compared. To assess accuracy of prediction of free-living walking speed, subjects also completed a self-paced, brisk 3-km walk wearing one of the four MTI, and differences between actual and predicted walking speed with and without individual calibration were examined. Results: Correlations between MTI counts and walking speed were 0.90 without individual calibration, 0.98 with individual calibration for the average MTI. and 0.99 with individual calibration for a specific MTI. The SEE (mean +/- SD) was 0.58 +/- 0.30 km(.)h(-1) without individual calibration, 0.19 +/- 0.09 km h(-1) with individual calibration for the average MTI monitor, and 0.16 +/- 0.08 km(.)h(-1) with individual calibration for a specific MTI monitor. The difference between actual and predicted walking speed on the brisk 3-km walk was 0.06 +/- 0.25 km(.)h(-1) using individual calibration and 0.28 +/- 0.63 km(.)h(-1) without individual calibration (for specific accelerometers). Conclusion: MTI accuracy in predicting walking speed without individual calibration might be sufficient for population-based studies but not for intervention trials. This individual calibration method will substantially increase precision of walking speed predicted from MTI counts.
Resumo:
The amplification of demand variation up a supply chain widely termed ‘the Bullwhip Effect’ is disruptive, costly and something that supply chain management generally seeks to minimise. Originally attributed to poor system design; deficiencies in policies, organisation structure and delays in material and information flow all lead to sub-optimal reorder point calculation. It has since been attributed to exogenous random factors such as: uncertainties in demand, supply and distribution lead time but these causes are not exclusive as academic and operational studies since have shown that orders and/or inventories can exhibit significant variability even if customer demand and lead time are deterministic. This increase in the range of possible causes of dynamic behaviour indicates that our understanding of the phenomenon is far from complete. One possible, yet previously unexplored, factor that may influence dynamic behaviour in supply chains is the application and operation of supply chain performance measures. Organisations monitoring and responding to their adopted key performance metrics will make operational changes and this action may influence the level of dynamics within the supply chain, possibly degrading the performance of the very system they were intended to measure. In order to explore this a plausible abstraction of the operational responses to the Supply Chain Council’s SCOR® (Supply Chain Operations Reference) model was incorporated into a classic Beer Game distribution representation, using the dynamic discrete event simulation software Simul8. During the simulation the five SCOR Supply Chain Performance Attributes: Reliability, Responsiveness, Flexibility, Cost and Utilisation were continuously monitored and compared to established targets. Operational adjustments to the; reorder point, transportation modes and production capacity (where appropriate) for three independent supply chain roles were made and the degree of dynamic behaviour in the Supply Chain measured, using the ratio of the standard deviation of upstream demand relative to the standard deviation of the downstream demand. Factors employed to build the detailed model include: variable retail demand, order transmission, transportation delays, production delays, capacity constraints demand multipliers and demand averaging periods. Five dimensions of supply chain performance were monitored independently in three autonomous supply chain roles and operational settings adjusted accordingly. Uniqueness of this research stems from the application of the five SCOR performance attributes with modelled operational responses in a dynamic discrete event simulation model. This project makes its primary contribution to knowledge by measuring the impact, on supply chain dynamics, of applying a representative performance measurement system.
Resumo:
On the basis of the standard model for the photorefractive nonlinearity we investigate whether a systematic description of the dependence of two-beam energy exchange on beam polarization and grating vector K is possible. Our result is that there is good agreement between theory and experiment with respect to the polarization properties and semi-quantitative agreement with respect to the K-dependence of the energy exchange.
Resumo:
The study investigated the potential applications and the limitations of non-standard techniques of visual field investigation utilizing automated perimetry. Normal subjects exhibited a greater sensitivity to kinetic stimuli than to static stimuli of identical size. The magnitude of physiological SKD was found to be largely independent of age, stimulus size, meridian and eccentricity. The absence of a dependency on stimulus size indicated that successive lateral spatial summation could not totally account for the underlying mechanism of physiological SKD. The visual field indices MD and LV exhibited a progressive deterioration during the time course of a conventional central visual field examination both for normal subjects and for ocular hypertensive patients. The fatigue effect was more pronounced in the latter stages and for the second eye tested. The confidence limits for the definition of abnormality should reflect the greater effect of fatigue on the second eye. A 330 cdm-2 yellow background was employed for blue-on-yellow perimetry. Instrument measurement range was preserved by positioning a concave mirror behind the stimulus bulb to increase the light output by 60% . The mean magnitude of SWS pathway isolation was approximately 1.4 log units relative to a 460nm stimulus filter. The absorption spectra of the ocular media exhibited an exponential increase with increase in age, whilst that of the macular pigment showed no systematic trend. The magnitude of ocular media absorption was demonstrated to reduce with increase in wavelength. Ocular media absorption was significantly greater in diabetic patients than in normal subjects. Five diabetic patients with either normal or borderline achromatic sensitivity exhibited an abnormal blue-on-yellow sensitivity; two of these patients showed no signs of retinopathy. A greater vulnerability of the SWS pathway to the diabetic disease process was hypothesized.
Resumo:
Limitations in the performance of coherent transmission systems employing digital back-propagation due to four-wave mixing impairments are reported for the first time. A significant performance constraint is identified, originating from four-wave mixing between signals and amplified spontaneous emission noise which induces a linear increase in the standard deviation of the received field with signal power, and linear dependence on transmission distance.
Resumo:
On the basis of the standard model for the photorefractive nonlinearity we investigate whether a systematic description of the dependence of two-beam energy exchange on beam polarization and grating vector K is possible. Our result is that there is good agreement between theory and experiment with respect to the polarization properties and semi-quantitative agreement with respect to the K-dependence of the energy exchange.