926 resultados para 040601 Geomorphology and Regolith and Landscape Evolution
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the putative influence of diabetes without metabolic control in the loss of tooth structure as well as histological changes in dentin and pulp tissue in rats. Diabetes was induced in Wistar rats (n=25) by intravenous administration of alloxan (42mg/kg). Diabetic and non-diabetic control rats were evaluated at 1, 3, 6, 9 and 12 months of follow-up. In order to evaluate the presence and progression of dental caries and periapical lesions, hemimandibles were removed and submitted to radiographical, histological, and morphometrical procedures. Dental caries were detected after radiographical and histological evaluations in diabetic group from the third month of diabetes onset, increasing gradually in frequency and severity in periods. Diabetic rats dental pulps also presented significant reduction in volume density of collagen fibers and fibroblasts at third month, parallel with a trend towards the increase in inflammatory cells volume density. Diabetic rats presented a generalized pulp tissue necrosis after 6 months of diabetes induction. Moreover, periapical lesions were not detected in control group, while these lesions were observed in all rats after 3, 6, 9, and 12 months of diabetes induction. Uncontrolled diabetes seems to trigger the loss of tooth structure, associated to histological dental changes and mediates its evolution to progressive severe pulp and periapical lesions in rats. Therefore, diabetes may be considered a very important risk factor regarding alterations in dental pulp, development of dental caries, and periapical lesions.
Resumo:
In social species, breeding system and gregarious behavior are key factors influencing the evolution of large-scale population genetic structure. The killer whale is a highly social apex predator showing genetic differentiation in sympatry between populations of foraging specialists (ecotypes), and low levels of genetic diversity overall. Our comparative assessments of kinship, parentage and dispersal reveal high levels of kinship within local populations and ongoing male-mediated gene flow among them, including among ecotypes that are maximally divergent within the mtDNA phylogeny. Dispersal from natal populations was rare, implying that gene flow occurs without dispersal, as a result of reproduction during temporary interactions. Discordance between nuclear and mitochondrial phylogenies was consistent with earlier studies suggesting a stochastic basis for the magnitude of mtDNA differentiation between matrilines. Taken together our results show how the killer whale breeding system, coupled with social, dispersal and foraging behaviour, contributes to the evolution of population genetic structure.
Resumo:
Najash rionegrina Apesteguia & Zaher, 2006, a terrestrial fossil snake from the Upper Cretaceous of Argentina, represents the first known snake with a sacrum associated with robust, well-developed hind limbs. Najash rionegrina documents an important gap in the evolutionary development towards limblessness, because its phylogenetic affinities suggest that it is the sister group of all modern snakes, including the limbed Tethyan snakes Pachyrhachis, Haasiophis, and Eupodophis. The latter three limbed marine fossil snakes are shown to be more derived morphologically, because they lack a sacrum, but have articulated lymphapophyses, and their appendicular skeleton is enclosed by the rib cage, as in modern snakes.
Resumo:
The Amazonian lowlands include large patches of open vegetation which contrast sharply with the rainforest, and the origin of these patches has been debated. This study focuses on a large area of open vegetation in northern Brazil, where d13C and, in some instances, C/N analyses of the organic matter preserved in late Quaternary sediments were used to achieve floristic reconstructions over time. The main goal was to determine when the modern open vegetation started to develop in this area. The variability in d13C data derived from nine cores ranges from -32.2 to -19.6 parts per thousand, but with nearly 60% of data above -26.5 parts per thousand. The most enriched values were detected only in ecotone and open vegetated areas. The development of open vegetation communities was asynchronous, varying between estimated ages of 6400 and 3000 cal a BP. This suggests that the origin of the studied patches of open vegetation might be linked to sedimentary dynamics of a late Quaternary megafan system. As sedimentation ended, this vegetation type became established over the megafan surface. In addition, the data presented here show that the presence of C4 plants must be used carefully as a proxy to interpret dry paleoclimatic episodes in Amazonian areas. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Four sediment cores were sampled from Lake Arari, located on Marajo Island at the mouth of the Amazon River. The island's vegetation cover is composed mainly of Amazon coastal forest, herbaceous and varzea vegetation. The integration of data on sedimentary structures, pollen, carbon and nitrogen isotope records, C/N ratios and radiocarbon ages allowed the identification of changes in vegetation and the sources of organic matter accumulated in the lake during the Holocene. The data indicate a relatively high flow energy, marine water influence and the presence of mangroves during the lagoon phase between 8990 and 8690 cal yr B.P. and 2310-2230 cal yr B.P. Between 2310 and 2230 cal yr B.P. and similar to 1000 cal yr B.P., the flow energy decreased and the mangroves were replaced by herbaceous vegetation following the decline in marine influence, likely due to the increase in freshwater river discharge. During the last 1000 years, Lake Arari was established in association with the expansion of herbaceous vegetation and the dominance of freshwater algae. (C) 2011 Elsevier BM. All rights reserved.
Resumo:
The evolutionary history of Hystricognathi is associated with major transformations in their placental system. Data so far indicate that key characters are independent from size dimensions in medium to very large species. To better understand the situation in smaller species, we analyzed placental development in a spiny rat, Thrichomys laurentinus. Fourteen individuals ranging from early implantation to near term were investigated by histology, immunohistochemistry, proliferation activity and electron microscopy. Placentation in Thrichomys revealed major parallels to the guinea pig and other hystricognath rodents with respect to the early and invasive implantation, the process of trophoblast invasion, the internal organization of the labyrinth and the trophospongium as well as the establishment of the complete inverted yolk sac placenta. In contrast to systematically related small-sized species, the placental regionalization in Thrichomys was characterized by a remarkable lobulated structure and associated growing processes. Reverse to former perspectives, these conditions represented ancient character states of hystricognaths. The subplacenta was temporarily supplied by both the maternal and fetal blood systems, a rare condition among hystricognaths. The extraplacental trophoblast originating from the subplacenta was partly proliferative in mid gestation. In conclusion, the presented results indicated that only minor variations occurred in small-sized hystricognath species, independent of their systematic interrelationships. Previous views were supported that placentation in hystricognaths followed an extraordinary stable pattern, although the group had distinct habitats in South America and Africa that were separated 30-40 million years ago. J. Exp. Zool. (Mol. Dev. Evol.) 318:13-25, 2012. (C) 2011 Wiley Periodicals, Inc.
Resumo:
During the Ediacaran, southern Brazil was the site of multiple episodes of volcanism and sedimentation, which are best preserved in the 3000 km(2) Camaqua Basin. The interlayered sedimentary and volcanic rocks record tectonic events and paleoenvironmental changes in a more than 10 km-thick succession. In this contribution, we report new U-Pb and Sm-Nd geochronological constraints for the 605 to 580 Ma Born Jardim Group, the 570 Ma Acampamento Velho Formation, and a newly-recognized 544 Ma volcanism. Depositional patterns of these units reveal the transition from a restricted, fault-bounded basin into a wide, shallow basin. The expansion of the basin and diminished subsidence rates are demonstrated by increasing areal distribution and compressed isopachs and increasing onlap of sediments onto the basement to the west. The Sm-Nd isotopic composition of the volcanic rocks indicates mixed sources, including crustal rocks from the adjacent basement. Both Neoproterozoic and Paleoproterozoic sources are indicated for the western part of the basin, whereas only the older Paleoproterozoic signature can be discerned in the eastern part of the basin. (C) 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
The gene transformer-2 of Anastrepha fruit flies (Diptera, Tephritidae) and its evolution in insects
Resumo:
Abstract Background In the tephritids Ceratitis, Bactrocera and Anastrepha, the gene transformer provides the memory device for sex determination via its auto-regulation; only in females is functional Tra protein produced. To date, the isolation and characterisation of the gene transformer-2 in the tephritids has only been undertaken in Ceratitis, and it has been shown that its function is required for the female-specific splicing of doublesex and transformer pre-mRNA. It therefore participates in transformer auto-regulatory function. In this work, the characterisation of this gene in eleven tephritid species belonging to the less extensively analysed genus Anastrepha was undertaken in order to throw light on the evolution of transformer-2. Results The gene transformer-2 produces a protein of 249 amino acids in both sexes, which shows the features of the SR protein family. No significant partially spliced mRNA isoform specific to the male germ line was detected, unlike in Drosophila. It is transcribed in both sexes during development and in adult life, in both the soma and germ line. The injection of Anastrepha transformer-2 dsRNA into Anastrepha embryos caused a change in the splicing pattern of the endogenous transformer and doublesex pre-mRNA of XX females from the female to the male mode. Consequently, these XX females were transformed into pseudomales. The comparison of the eleven Anastrepha Transformer-2 proteins among themselves, and with the Transformer-2 proteins of other insects, suggests the existence of negative selection acting at the protein level to maintain Transformer-2 structural features. Conclusions These results indicate that transformer-2 is required for sex determination in Anastrepha through its participation in the female-specific splicing of transformer and doublesex pre-mRNAs. It is therefore needed for the auto-regulation of the gene transformer. Thus, the transformer/transfomer-2 > doublesex elements at the bottom of the cascade, and their relationships, probably represent the ancestral state (which still exists in the Tephritidae, Calliphoridae and Muscidae lineages) of the extant cascade found in the Drosophilidae lineage (in which tra is just another component of the sex determination gene cascade regulated by Sex-lethal). In the phylogenetic lineage that gave rise to the drosophilids, evolution co-opted for Sex-lethal, modified it, and converted it into the key gene controlling sex determination.
Resumo:
Abstract Background How are morphological evolution and developmental changes related? This rather old and intriguing question had a substantial boost after the 70s within the framework of heterochrony (changes in rates or timing of development) and nowadays has the potential to make another major leap forward through the combination of approaches: molecular biology, developmental experimentation, comparative systematic studies, geometric morphometrics and quantitative genetics. Here I take an integrated approach combining life-history comparative analyses, classical and geometric morphometrics applied to ontogenetic series to understand changes in size and shape which happen during the evolution of two New World Monkeys (NWM) sister genera. Results Cebus and Saimiri share the same basic allometric patterns in skull traits, a result robust to sexual and ontogenetic variation. If adults of both genera are compared in the same scale (discounting size differences) most differences are small and not statistically significant. These results are consistent using both approaches, classical and geometric Morphometrics. Cebus is a genus characterized by a number of peramorphic traits (adult-like) while Saimiri is a genus with paedomorphic (child like) traits. Yet, the whole clade Cebinae is characterized by a unique combination of very high pre-natal growth rates and relatively slow post-natal growth rates when compared to the rest of the NWM. Morphologically Cebinae can be considered paedomorphic in relation to the other NWM. Geometric morphometrics allows the precise separation of absolute size, shape variation associated with size (allometry), and shape variation non-associated with size. Interestingly, and despite the fact that they were extracted as independent factors (principal components), evolutionary allometry (those differences in allometric shape associated with intergeneric differences) and ontogenetic allometry (differences in allometric shape associated with ontogenetic variation within genus) are correlated within these two genera. Furthermore, morphological differences produced along these two axes are quite similar. Cebus and Saimiri are aligned along the same evolutionary allometry and have parallel ontogenetic allometry trajectories. Conclusion The evolution of these two Platyrrhini monkeys is basically due to a size differentiation (and consequently to shape changes associated with size). Many life-history changes are correlated or may be the causal agents in such evolution, such as delayed on-set of reproduction in Cebus and larger neonates in Saimiri.
Resumo:
Ecología, Facultad de Biología, Universidad de Santiago de Compostela