438 resultados para winding drum
Resumo:
Direct-driven permanent magnet synchronous generator is one of the most promising topologies for megawatt-range wind power applications. The rotational speed of the direct-driven generator is very low compared with the traditional electrical machines. The low rotational speed requires high torque to produce megawatt-range power. The special features of the direct-driven generators caused by the low speed and high torque are discussed in this doctoral thesis. Low speed and high torque set high demands on the torque quality. The cogging torque and the load torque ripple must be as low as possible to prevent mechanical failures. In this doctoral thesis, various methods to improve the torque quality are compared with each other. The rotor surface shaping, magnet skew, magnet shaping, and the asymmetrical placement of magnets and stator slots are studied not only by means of torque quality, but also the effects on the electromagnetic performance and manufacturability of the machine are discussed. The heat transfer of the direct-driven generator must be designed to handle the copper losses of the stator winding carrying high current density and to keep the temperature of the magnets low enough. The cooling system of the direct-driven generator applying the doubly radial air cooling with numerous radial cooling ducts was modeled with a lumped-parameter-based thermal network. The performance of the cooling system was discussed during the steady and transient states. The effect of the number and width of radial cooling ducts was explored. The large number of radial cooling ducts drastically increases the impact of the stack end area effects, because the stator stack consists of numerous substacks. The effects of the radial cooling ducts on the effective axial length of the machine were studied by analyzing the crosssection of the machine in the axial direction. The method to compensate the magnet end area leakage was considered. The effect of the cooling ducts and the stack end area effects on the no-load voltages and inductances of the machine were explored by using numerical analysis tools based on the three-dimensional finite element method. The electrical efficiency of the permanent magnet machine with different control methods was estimated analytically over the whole speed and torque range. The electrical efficiencies achieved with the most common control methods were compared with each other. The stator voltage increase caused by the armature reaction was analyzed. The effect of inductance saturation as a function of load current was implemented to the analytical efficiency calculation.
Resumo:
ABSTRACT Geographic Information System (GIS) is an indispensable software tool in forest planning. In forestry transportation, GIS can manage the data on the road network and solve some problems in transportation, such as route planning. Therefore, the aim of this study was to determine the pattern of the road network and define transport routes using GIS technology. The present research was conducted in a forestry company in the state of Minas Gerais, Brazil. The criteria used to classify the pattern of forest roads were horizontal and vertical geometry, and pavement type. In order to determine transport routes, a data Analysis Model Network was created in ArcGIS using an Extension Network Analyst, allowing finding a route shorter in distance and faster. The results showed a predominance of horizontal geometry classes average (3) and bad (4), indicating presence of winding roads. In the case of vertical geometry criterion, the class of highly mountainous relief (4) possessed the greatest extent of roads. Regarding the type of pavement, the occurrence of secondary coating was higher (75%), followed by primary coating (20%) and asphalt pavement (5%). The best route was the one that allowed the transport vehicle travel in a higher specific speed as a function of road pattern found in the study.
Resumo:
Kuumahiertoprosessi on erittäin energiaintensiivinen prosessi, jonka energianominaiskulutus (EOK) on yleisesti 2–3.5 MWh/bdt. Noin 93 % energiasta kuluu jauhatuksessa jakautuen niin, että kaksi kolmasosaa kuluu päälinjan ja yksi kolmasosa rejektijauhatuksessa. Siksi myös tämän työn tavoite asetettiin vähentämään energian kulutusta juuri pää- ja rejektijauhatuksessa. Päälinjan jauhatuksessa tutkimuskohteiksi valittiin terityksen, tehojaon ja tuotantotason vaikutus EOK:een. Rejektijauhatuksen tehostamiseen pyrittiin yrittämällä vähentää rejektivirtaamaa painelajittelun keinoin. Koska TMP3 laitoksen jauhatuskapasiteettia on nostettu 25 %, tavoite oli nostaa päälinjan lajittelun kapasiteettia saman verran. Toisena tavoitteena oli pienentää rejektisuhdetta pää- ja rejektilajittelussa ja siten vähentää energiankulutusta rejektijauhatuksessa. Näitä tavoitteita lähestyttiin vaihtamalla päälinjan lajittimiin TamScreen-roottorit ja rejektilajittimiin Metso ProFoil-roottorit ja optimoimalla kuitufraktiot sihtirumpu- ja prosessiparametrimuutoksin. Syöttävällä terätyypillä pystyttiin vähentämään EOK:ta 100 kWh/bdt, mutta korkeampi jauhatusintensiteetti johti myös alempiin lujuusominaisuuksiin, korkeampaan ilmanläpäisyyn ja korkeampaan opasiteettiin. Myös tehojaolla voitiin vaikuttaa EOK:een. Kun ensimmäisen vaiheen jauhinta kuormitettiin enemmän, saavutettiin korkeimmillaan 70 kWh/bdt EOK-vähennys. Tuotantotason mittaamisongelmat heikensivät tuotantotasokoeajojen tuloksia siinä määrin, että näiden tulosten perusteella ei voida päätellä, onko EOK tuotantotasoriippuvainen vai ei. Päälinjan lajittelun kapasiteettia pystyttiin nostamaan TS-roottorilla vain 18 % jääden hieman tavoitetasosta. Rejektilajittelussa pystyttiin vähentämään rejektimäärää huomattavasti Metso ProFoil-roottorilla sekä sihtirumpu- ja prosessiparametrimuutoksin. Lajittamokehityksellä saavutettu EOK-vähennys arvioitiin massarejektisuhteen pienentymisen ja rejektijauhatuksessa käytetyn EOK:n avulla olevan noin 130 kWh/bdt. Yhteenvetona voidaan todeta, että tavoite 300 kWh/bdt EOK-vähennyksestä voidaan saavuttaa työssä käytetyillä tavoilla, mikäli niiden täysi potentiaali hyödynnetään tuotannossa.
Resumo:
Fuel cells are a promising alternative for clean and efficient energy production. A fuel cell is probably the most demanding of all distributed generation power sources. It resembles a solar cell in many ways, but sets strict limits to current ripple, common mode voltages and load variations. The typically low output voltage from the fuel cell stack needs to be boosted to a higher voltage level for grid interfacing. Due to the high electrical efficiency of the fuel cell, there is a need for high efficiency power converters, and in the case of low voltage, high current and galvanic isolation, the implementation of such converters is not a trivial task. This thesis presents galvanically isolated DC-DC converter topologies that have favorable characteristics for fuel cell usage and reviews the topologies from the viewpoint of electrical efficiency and cost efficiency. The focus is on evaluating the design issues when considering a single converter module having large current stresses. The dominating loss mechanism in low voltage, high current applications is conduction losses. In the case of MOSFETs, the conduction losses can be efficiently reduced by paralleling, but in the case of diodes, the effectiveness of paralleling depends strongly on the semiconductor material, diode parameters and output configuration. The transformer winding losses can be a major source of losses if the windings are not optimized according to the topology and the operating conditions. Transformer prototyping can be expensive and time consuming, and thus it is preferable to utilize various calculation methods during the design process in order to evaluate the performance of the transformer. This thesis reviews calculation methods for solid wire, litz wire and copper foil winding losses, and in order to evaluate the applicability of the methods, the calculations are compared against measurements and FEM simulations. By selecting a proper calculation method for each winding type, the winding losses can be predicted quite accurately before actually constructing the transformer. The transformer leakage inductance, the amount of which can also be calculated with reasonable accuracy, has a significant impact on the semiconductor switching losses. Therefore, the leakage inductance effects should also be taken into account when considering the overall efficiency of the converter. It is demonstrated in this thesis that although there are some distinctive differences in the loss distributions between the converter topologies, the differences in the overall efficiency can remain within a range of a few percentage points. However, the optimization effort required in order to achieve the high efficiencies is quite different in each topology. In the presence of practical constraints such as manufacturing complexity or cost, the question of topology selection can become crucial.
Resumo:
Työssä selvitettiin teknis-taloudellisen vaihtoehto Lakeuden Ympäristöhuollon keräämän biojätteen ja Seinäjoen lähialueella syntyvän hevosenlannan käsittelyyn. Nykyisin Lakeuden Ympäristöhuolto Oy:n keräämä biojäte kuljetetaan paikallisen jätehuoltoyhti-ön biokaasulaitokseen ja hevosenlantaa ei alueelta vielä kerätä olleenkaan. Työn lähtö-kohtana oli vertailla mahdollisesti rakennettavan oman biokaasulaitoksen ja rumpu-kompostointilaitoksen kannattavuutta toisiinsa. Kannattavuuden laskennassa käytettiin annuiteettimenetelmää. Työn kirjallisuusosiossa kerrotaan eloperäisten jätteiden ominaisuuksista mädätyksen ja kompostoinnin kannalta, mädätys- ja kompostointiprosessista, mädätys- ja kompostoin-titekniikoista sekä menetelmien eduista sekä haitoista. Työssä perehdyttiin myös mädä-tyksen ja kompostoinnin lopputuotteiden hyödyntämiseen. Vaihtoehtojen vaertailussa kumpikaan hankkeista ei ollut taloudellisesti kannattava. Vaikka prosesseihin saataisiin nykyään kerättävän biojätteen määrän lisäksi 2000 tonnia hevosenlantaa, se ei tee hankkeista kannattavia. Edes herkkyystarkastelussa laskettu korkeampi hevosenlannan porttimaksun määrä ei vaikuttanut kannattavuuteen. Lakeuden Ympäristöhuollon näin ollen on viisainta olla investoimatta kumpaakaan hankkeeseen.
Resumo:
Permanent magnet generators (PMG) represent the cutting edge technology in modern wind mills. The efficiency remains high (over 90%) at partial loads. To improve the machine efficiency even further, every aspect of machine losses has to be analyzed. Additional losses are often given as a certain percentage without providing any detailed information about the actual calculation process; meanwhile, there are many design-dependent losses that have an effect on the total amount of additional losses and that have to be taken into consideration. Additional losses are most often eddy current losses in different parts of the machine. These losses are usually difficult to calculate in the design process. In this doctoral thesis, some additional losses are identified and modeled. Further, suggestions on how to minimize the losses are given. Iron losses can differ significantly between the measured no-load values and the loss values under load. In addition, with embedded magnet rotors, the quadrature-axis armature reaction adds losses to the stator iron by manipulating the harmonic content of the flux. It was, therefore, re-evaluated that in salient pole machines, to minimize the losses and the loss difference between the no-load and load operation, the flux density has to be kept below 1.5 T in the stator yoke, which is the traditional guideline for machine designers. Eddy current losses may occur in the end-winding area and in the support structure of the machine, that is, in the finger plate and the clamping ring. With construction steel, these losses account for 0.08% of the input power of the machine. These losses can be reduced almost to zero by using nonmagnetic stainless steel. In addition, the machine housing may be subjected to eddy current losses if the flux density exceeds 1.5 T in the stator yoke. Winding losses can rise rapidly when high frequencies and 10–15 mm high conductors are used. In general, minimizing the winding losses is simple. For example, it can be done by dividing the conductor into transposed subconductors. However, this comes with the expense of an increase in the DC resistance. In the doctoral thesis, a new method is presented to minimize the winding losses by applying a litz wire with noninsulated strands. The construction is the same as in a normal litz wire but the insulation between the subconductors has been left out. The idea is that the connection is kept weak to prevent harmful eddy currents from flowing. Moreover, the analytical solution for calculating the AC resistance factor of the litz-wire is supplemented by including an end-winding resistance in the analytical solution. A simple measurement device is developed to measure the AC resistance in the windings. In the case of a litz-wire with originally noninsulated strands, vacuum pressure impregnation (VPI) is used to insulate the subconductors. In one of the two cases studied, the VPI affected the AC resistance factor, but in the other case, it did not have any effect. However, more research is needed to determine the effect of the VPI on litz-wire with noninsulated strands. An empirical model is developed to calculate the AC resistance factor of a single-layer formwound winding. The model includes the end-winding length and the number of strands and turns. The end winding includes the circulating current (eddy currents that are traveling through the whole winding between parallel strands) and the main current. The end-winding length also affects the total AC resistance factor.
Resumo:
Abstract: Paca (Cuniculus paca), one of the largest rodents of the Brazilian fauna, has inherent characteristics of its species which can conribute as a new option for animal experimantation. As there is a growing demand for suitable experimental models in audiologic and otologic surgical research, the gross anatomy and ultrastructural ear of this rodent have been analyzed and described in detail. Fifteen adult pacas from the Wild Animals Sector herd of Faculdade de Ciências Agrárias e Veterinárias, Unesp-Jaboticabal, were used in this study. After anesthesia and euthanasia, we evaluated the entire composition of the external ear, registering and ddescribing the details; the temporal region was often dissected for a better view and detailing of the tympanic bulla which was removed and opened to expose the ear structures analyzed mascroscopically and ultrastructurally. The ear pinna has a triangular and concave shape with irregular ridges and sharp apex. The external auditory canal is winding in its path to the tympanic mebrane. The tympanic bulla is is on the back-bottom of the skull. The middle ear is formed by a cavity region filled with bone and membranous structures bounded by the tympanic membrane and the oval and round windows. The tympanic membrane is flat and seals the ear canal. The anatomy of the paca ear is similar to the guinea pig and from the viewpoint of experimental model has major advantages compared with the mouse ear.
Resumo:
This study has a technical and applied character. A PVC structured wall pipe can be produced by spirally winding a ribbed sheet having a male-female lock, chemically welded by an adhesive. These pipes are "flexible" and are used mainly in underground installations, to convey fluids in free duct regime. Initial studies have indicated that the buckling resistance of the ribs from the sheet coiling to the tube manufacturing is the critical design parameter. This study presents the theoretical analytical development in order to obtain the critical buckling moment of these sheets. This analysis uses concepts initially developed to calculate buckling resistance in monosymmetrical profiles that are very used in the metallic structure industry. Since the material used was PVC, that has different mechanical properties than steel and aluminum, it was necessary to consider the differences in the analytical treatment. It is important to emphasize that the results obtained are product of the co-operative work of engineers from industry and university.
Resumo:
During vehicle deceleration due to braking there is friction between the lining surface and the brake drum or disc. In this process the kinetic energy of vehicle is turned into thermal energy that raises temperature of the components. The heating of the brake system in the course of braking is a great problem, because besides damaging the system, it may also affect the wheel and tire, which can cause accidents. In search of the best configuration that considers the true conditions of use, without passing the safety limits, models and formulations are presented with respect to the brake system, considering different braking conditions and kinds of brakes. Some modeling was analyzed using well-known methods. The flat plate model considering energy conservation was applied to a bus, using for this a computer program. The vehicle is simulated to undergo an emergency braking, considering the change of temperature on the lining-drum. The results include deceleration, braking efficiency, wheel resistance, normal reaction on the tires and the coefficient of adhesion. Some of the results were compared with dynamometer tests made by FRAS-LE and others were compared with track tests made by Mercedes-Benz. The convergence between the results and the tests is sufficient to validate the mathematical model. The computer program makes it possible to simulate the brake system performance in the vehicle. It assists the designer during the development phase and reduces track tests.
Resumo:
This doctoral thesis presents a study on the design of tooth-coil permanent magnet synchronous machines. The electromagnetic properties of concentrated non-overlapping winding permanent magnet synchronous machines, or simply tooth-coil permanent magnet synchronous machines (TC-PMSMs), are studied in details. It is shown that current linkage harmonics play the deterministic role in the behavior of this type of machines. Important contributions are presented as regards of calculation of parameters of TC-PMSMs,particularly the estimation of inductances. The current linkage harmonics essentially define the air-gap harmonic leakage inductance, rotor losses and localized temporal inductance variation. It is proven by FEM analysis that inductance variation caused by the local temporal harmonic saturation results in considerable torque ripple, and can influence on sensorless control capabilities. Example case studies an integrated application of TC-IPMSMs in hybrid off-highway working vehicles. A methodology for increasing the efficiency of working vehicles is introduced. It comprises several approaches – hybridization, working operations optimization, component optimization and integration. As a result of component optimization and integration, a novel integrated electro-hydraulic energy converter (IEHEC) for off-highway working vehicles is designed. The IEHEC can considerably increase the operational efficiency of a hybrid working vehicle. The energy converter consists of an axial-piston hydraulic machine and an integrated TCIPMSM being built on the same shaft. The compact assembly of the electrical and hydraulic machines enhances the ability to find applications for such a device in the mobile environment of working vehicles.Usage of hydraulic fluid, typically used in working actuators, enables direct-immersion oil cooling of designed electrical machine, and further increases the torque- and power- densities of the whole device.
Resumo:
At present, permanent magnet synchronous generators (PMSGs) are of great interest. Since they do not have electrical excitation losses, the highly efficient, lightweight and compact PMSGs equipped with damper windings work perfectly when connected to a network. However, in island operation, the generator (or parallel generators) alone is responsible for the building up of the network and maintaining its voltage and reactive power level. Thus, in island operation, a PMSG faces very tight constraints, which are difficult to meet, because the flux produced by the permanent magnets (PMs) is constant and the voltage of the generator cannot be controlled. Traditional electrically excited synchronous generators (EESGs) can easily meet these constraints, because the field winding current is controllable. The main drawback of the conventional EESG is the relatively high excitation loss. This doctoral thesis presents a study of an alternative solution termed as a hybrid excitation synchronous generator (HESG). HESGs are a special class of electrical machines, where the total rotor current linkage is produced by the simultaneous action of two different excitation sources: the electrical and permanent magnet (PM) excitation. An overview of the existing HESGs is given. Several HESGs are introduced and compared with the conventional EESG from technical and economic points of view. In the study, the armature-reaction-compensated permanent magnet synchronous generator with alternated current linkages (ARC-PMSG with ACL) showed a better performance than the other options. Therefore, this machine type is studied in more detail. An electromagnetic design and a thermal analysis are presented. To verify the operation principle and the electromagnetic design, a down-sized prototype of 69 kVA apparent power was built. The experimental results are demonstrated and compared with the predicted ones. A prerequisite for an ARC-PMSG with ACL is an even number of pole pairs (p = 2, 4, 6, …) in the machine. Naturally, the HESG technology is not limited to even-pole-pair machines. However, the analysis of machines with p = 3, 5, 7, … becomes more complicated, especially if analytical tools are used, and is outside the scope of this thesis. The contribution of this study is to propose a solution where an ARC-PMSG replaces an EESG in electrical power generation while meeting all the requirements set for generators given for instance by ship classification societies, particularly as regards island operation. The maximum power level when applying the technology studied here is mainly limited by the economy of the machine. The larger the machine is, the smaller is the efficiency benefit. However, it seems that machines up to ten megawatts of power could benefit from the technology. However, in low-power applications, for instance in the 500 kW range, the efficiency increase can be significant.
Resumo:
Pulssinleveysmoduloidun vaihtosuuntaajan hyötysuhteen parantaminen ja kytkentätaajuuden suurentaminen ovat johtaneet lähtöjännitteen suuritaajuiseen taajuussisältöön kaksitasoisessa, jännitevälipiirillisessä taajuusmuuttajatopologiassa. Kasvava tarve siirtää tehoa myös verkkoon päin on lisännyt aktiivisen verkkosillan käyttöä. Kaksitasoisen aktiivisen verkkosillan vaikutuksesta DC-välipiirin keskipisteen ja kolmivaiheisen kuorman tähtipisteen välinen jännite on nollasta poikkeava aiheuttaen suurentuneen yhteismuotoisen jännitteen taajuusmuuttajan lähtöön ja verkon puolelle. Lisäksi yhteismuotoisten jännitteiden aiheuttamat kytkentätaajuiset häiriövirrat voivat aiheuttaa vikavirtasuojien tahatonta laukeamista, vaikeuttaa EMC-standardien vaatimusten täyttämistä, lisätä moottorin käämieristyksien rasitusta ja mahdollisuutta moottorin laakerivaurioille. Diplomityössä tutkitaan aktiivisen ja passiivisen verkkosillan tuottamaa yhteismuotoista jännitettä simuloinneilla. Esitellään aikaisempaa tutkimustietoa yhteismuotoisen jännitteen ja virran vaimennusratkaisuista aktiivista verkkosiltaa käytettäessä. Tutkimustiedon pohjalta suunnitellaan koelaitteistolle soveltuva suodin. Suotimen toiminta testataan simuloinnein sekä kokeellisin mittauksin. Tehdyt mittaukset osoittavat, että suunniteltu suodin vaimentaa yhteismuotoista jännitettä noin 20 dB verkkosillan kytkentätaajuudella ja tämän jälkeen yli 20 dB/dekadi taajuuteen 100 kHz asti. Lisäksi yhteismuotoisen virran suuruus syöttökaapelin kautta pieneni ehdotetun suotimen vaikutuksesta.
Resumo:
The power rating of wind turbines is constantly increasing; however, keeping the voltage rating at the low-voltage level results in high kilo-ampere currents. An alternative for increasing the power levels without raising the voltage level is provided by multiphase machines. Multiphase machines are used for instance in ship propulsion systems, aerospace applications, electric vehicles, and in other high-power applications including wind energy conversion systems. A machine model in an appropriate reference frame is required in order to design an efficient control for the electric drive. Modeling of multiphase machines poses a challenge because of the mutual couplings between the phases. Mutual couplings degrade the drive performance unless they are properly considered. In certain multiphase machines there is also a problem of high current harmonics, which are easily generated because of the small current path impedance of the harmonic components. However, multiphase machines provide special characteristics compared with the three-phase counterparts: Multiphase machines have a better fault tolerance, and are thus more robust. In addition, the controlled power can be divided among more inverter legs by increasing the number of phases. Moreover, the torque pulsation can be decreased and the harmonic frequency of the torque ripple increased by an appropriate multiphase configuration. By increasing the number of phases it is also possible to obtain more torque per RMS ampere for the same volume, and thus, increase the power density. In this doctoral thesis, a decoupled d–q model of double-star permanent-magnet (PM) synchronous machines is derived based on the inductance matrix diagonalization. The double-star machine is a special type of multiphase machines. Its armature consists of two three-phase winding sets, which are commonly displaced by 30 electrical degrees. In this study, the displacement angle between the sets is considered a parameter. The diagonalization of the inductance matrix results in a simplified model structure, in which the mutual couplings between the reference frames are eliminated. Moreover, the current harmonics are mapped into a reference frame, in which they can be easily controlled. The work also presents methods to determine the machine inductances by a finite-element analysis and by voltage-source inverters on-site. The derived model is validated by experimental results obtained with an example double-star interior PM (IPM) synchronous machine having the sets displaced by 30 electrical degrees. The derived transformation, and consequently, the decoupled d–q machine model, are shown to model the behavior of an actual machine with an acceptable accuracy. Thus, the proposed model is suitable to be used for the model-based control design of electric drives consisting of double-star IPM synchronous machines.
Resumo:
Today’s electrical machine technology allows increasing the wind turbine output power by an order of magnitude from the technology that existed only ten years ago. However, it is sometimes argued that high-power direct-drive wind turbine generators will prove to be of limited practical importance because of their relatively large size and weight. The limited space for the generator in a wind turbine application together with the growing use of wind energy pose a challenge for the design engineers who are trying to increase torque without making the generator larger. When it comes to high torque density, the limiting factor in every electrical machine is heat, and if the electrical machine parts exceed their maximum allowable continuous operating temperature, even for a short time, they can suffer permanent damage. Therefore, highly efficient thermal design or cooling methods is needed. One of the promising solutions to enhance heat transfer performances of high-power, low-speed electrical machines is the direct cooling of the windings. This doctoral dissertation proposes a rotor-surface-magnet synchronous generator with a fractional slot nonoverlapping stator winding made of hollow conductors, through which liquid coolant can be passed directly during the application of current in order to increase the convective heat transfer capabilities and reduce the generator mass. This doctoral dissertation focuses on the electromagnetic design of a liquid-cooled direct-drive permanent-magnet synchronous generator (LC DD-PMSG) for a directdrive wind turbine application. The analytical calculation of the magnetic field distribution is carried out with the ambition of fast and accurate predicting of the main dimensions of the machine and especially the thickness of the permanent magnets; the generator electromagnetic parameters as well as the design optimization. The focus is on the generator design with a fractional slot non-overlapping winding placed into open stator slots. This is an a priori selection to guarantee easy manufacturing of the LC winding. A thermal analysis of the LC DD-PMSG based on a lumped parameter thermal model takes place with the ambition of evaluating the generator thermal performance. The thermal model was adapted to take into account the uneven copper loss distribution resulting from the skin effect as well as the effect of temperature on the copper winding resistance and the thermophysical properties of the coolant. The developed lumpedparameter thermal model and the analytical calculation of the magnetic field distribution can both be integrated with the presented algorithm to optimize an LC DD-PMSG design. Based on an instrumented small prototype with liquid-cooled tooth-coils, the following targets have been achieved: experimental determination of the performance of the direct liquid cooling of the stator winding and validating the temperatures predicted by an analytical thermal model; proving the feasibility of manufacturing the liquid-cooled tooth-coil winding; moreover, demonstration of the objectives of the project to potential customers.