910 resultados para volume of fluid method
Resumo:
The problem of diffraction of an optical wave by a 2D periodic metal aperture array with square, circular, and ring apertures is solved with allowance for the finite permittivity of a metal in the optical band. The correctness of the obtained results is verified through comparison with experimental data. It is shown that the transmission coefficient can be substantially greater than the corresponding value reached in the case of diffraction by a grating in a perfectly conducting screen.
Resumo:
A method is described for the quantitative confirmation of halofuginone (HFG) residues in chicken liver and eggs. This method is based on LC coupled to positive ion electrospray MS-MS of the tissue extracts, prepared by trypsin digestion of the tissues followed by liquid-liquid extraction and final clean-up using Solid Phase Extraction (SPE). The [M+H](+) ion at m/z 416 is monitored along with four transitions at m/z 398, 138, 120 and 100. The method has been validated according to the draft EU criteria for the analysis of veterinary drug residues at 15, 30 and 45 mug kg (-1) in liver and 5, 15 and 50 mug kg (-1) in eggs. The new analytical limits, CCalpha and CCbeta were calculated for liver and were 35.4 and 43.6 mug kg (-1), respectively. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A method is described for the quantitative confirmation of 4,4'-dinitrocarbanilide (DNC), the marker residue for nicarbazin in chicken liver and eggs. The method is based on LC coupled to negative ion electrospray MS-MS of tissue extracts prepared by liquid-liquid extraction. The [M-H](-) ion at m/z 301 is monitored along with two transition ions at m/z 137 and 107 for DNC and the [M-H](-) ion at m/z 309 for the internal standard, d(8)-DNC. The method has been validated according to the new EU criteria for the analysis of veterinary drug residues at 100, 200 and 300 mug kg(-1) in liver and at 10, 30 and 100 mug kg(-1) in eggs. Difficulties concerning the application of the new analytical limits, namely the decision limit (CC) and the detection capability (CC) to the determination of DNC in both liver and eggs are discussed.
Resumo:
Mercury in plants or animal tissue is supposed to occur in the form of complexes formed with biologically relevant thiols (biothiols), rather than as free cation. We describe a technique for the separation and molecular identification of mercury and methylmercury complexes derived from their reactions with cysteine (Cys) and glutathione (GS): Hg(Cys)(2), Hg(GS)(2), MeHgCys, MeHgGS. Complexes were characterised by electrospray mass spectrometry (MS) equipped with an ion trap and the fragmentation pattern of MeHgCys was explained by using MP2 and B3LYP calculations, showing the importance of mercury-amine interactions in the gas phase. Chromatographic baseline separation was performed within 10 min with formic acid as the mobile phase on a reversed-phase column. Detection was done by online simultaneous coupling of ES-MS and inductively coupled plasma MS. When the mercury complexes were spiked in real samples (plant extracts), no perturbation of the separation and detection conditions was observed, suggesting that this method is capable of detecting mercury biothiol complexes in plants.