785 resultados para vision-impaired
Resumo:
Purpose: In this study, we investigated the expression of the gene encoding beta-galactosidase (Glb)-1-like protein 3 (Glb1l3), a member of the glycosyl hydrolase 35 family, during retinal degeneration in the retinal pigment epithelium (RPE)-specific 65-kDa protein knockout (Rpe65(-/-)) mouse model of Leber congenital amaurosis (LCA). Additionally, we assessed the expression of the other members of this protein family, including beta-galactosidase-1 (Glb1), beta-galactosidase-1-like (Glb1l), and beta-galactosidase-1-like protein 2 (Glb1l2).Methods: The structural features of Glb1l3 were assessed using bioinformatic tools. mRNA expression of Glb-related genes was investigated by oligonucleotide microarray, real-time PCR, and reverse transcription (RT) -PCR. The localized expression of Glb1l3 was assessed by combined in situ hybridization and immunohistochemistry.Results: Glb1l3 was the only Glb-related member strongly downregulated in Rpe65(-/-) retinas before the onset and during progression of the disease. Glb1l3 mRNA was only expressed in the retinal layers and the RPE/choroid. The other Glb-related genes were ubiquitously expressed in different ocular tissues, including the cornea and lens. In the healthy retina, expression of Glb1l3 was strongly induced during postnatal retinal development; age-related increased expression persisted during adulthood and aging.Conclusions: These data highlight early-onset downregulation of Glb1l3 in Rpe65-related disease. They further indicate that impaired expression of Glb1l3 is mostly due to the absence of the chromophore 11-cis retinal, suggesting that Rpe65 deficiency may have many metabolic consequences in the underlying neuroretina.
Resumo:
T cell factor-1 (Tcf-1) is a transcription factor that binds to a sequence motif present in several T cell-specific enhancer elements. In Tcf-1-deficient (Tcf-1-/-) mice, thymocyte development is partially blocked at the transition from the CD4-8+ immature single-positive stage to the CD4+8+ double-positive stage, resulting in a marked decrease of mature peripheral T cells in lymph node and spleen. We report here that the development of most intestinal TCR gamma delta+ cells and liver CD4+ NK1.1+TCR alpha beta+ (NK1+T) cells, which are believed to be of extrathymic origin, is selectively impaired in Tcf-1-/- mice. In contrast, thymic and thymus-derived (splenic) TCR gamma delta+ cells are present in normal numbers in Tcf-1-/- mice, as are other T cell subsets in intestine and liver. Collectively, our data suggest that Tcf-1 is differentially required for the development of some extrathymic T cell subsets, including intestinal TCR gamma delta+ cells and liver CD4+ NK1+T cells.
Resumo:
BACKGROUND: The impact of preoperative impaired left ventricular ejection fraction (EF) in octogenarians following coronary bypass surgery on short-term survival was evaluated in this study. METHODS: A total of 147 octogenarians (mean age 82.1 ± 1.9 years) with coronary artery diseases underwent elective coronary artery bypass graft between January 2000 and December 2009. Patients were stratified into: Group I (n = 59) with EF >50%, Group II (n = 59) with 50% > EF >30% and in Group III (n = 29) with 30% > EF. RESULTS: There was no difference among the three groups regarding incidence of COPD, renal failure, congestive heart failure, diabetes, and preoperative cerebrovascular events. Postoperative atrial fibrillation was the sole independent predictive factor for in-hospital mortality (odds ratio (OR), 18.1); this was 8.5% in Group I, 15.3% in Group II and 10.3% in Group III. Independent predictive factors for mortality during follow up were: decrease of EF during follow-up for more that 5% (OR, 5.2), usage of left internal mammary artery as free graft (OR, 18.1), and EF in follow-up lower than 40% (OR, 4.8). CONCLUSIONS: The results herein suggest acceptable in-hospital as well short-term mortality in octogenarians with impaired EF following coronary artery bypass grafting (CABG) and are comparable to recent literature where the mortality of younger patients was up to 15% and short-term mortality up to 40%, respectively. Accordingly, we can also state that in an octogenarian cohort with impaired EF, CABG is a viable treatment with acceptable mortality.
Resumo:
Type 2 diabetes has been related to a decrease of mitochondrial DNA (mtDNA) content. In this study, we show increased expression of the peroxisome proliferator-activated receptor-alpha (PPARalpha) and its target genes involved in fatty acid metabolism in skeletal muscle of Zucker Diabetic Fatty (ZDF) (fa/fa) rats. In contrast, the mRNA levels of genes involved in glucose transport and utilization (GLUT4 and phosphofructokinase) were decreased, whereas the expression of pyruvate dehydrogenase kinase 4 (PDK-4), which suppresses glucose oxidation, was increased. The shift from glucose to fatty acids as the source of energy in skeletal muscle of ZDF rats was accompanied by a reduction of subunit 1 of complex I (NADH dehydrogenase subunit 1, ND1) and subunit II of complex IV (cytochrome c oxidase II, COII), two genes of the electronic transport chain encoded by mtDNA. The transcript levels of PPARgamma Coactivator 1 (PGC-1) showed a significant reduction. Treatment with troglitazone (30 mg/kg/day) for 15 days reduced insulin values and reversed the increase in PDK-4 mRNA levels, suggesting improved insulin sensitivity. In addition, troglitazone treatment restored ND1 and PGC-1 expression in skeletal muscle. These results suggest that troglitazone may avoid mitochondrial metabolic derangement during the development of diabetes mellitus 2 in skeletal muscle.
Resumo:
Glucose-dependent insulinotropic polypeptide (GIP) was initially described to be rapidly regulated by endocrine cells in response to nutrient ingestion, with stimulatory effects on insulin synthesis and release. Previously, we demonstrated a significant up-regulation of GIP mRNA in the rat subiculum after fornix injury. To gain more insight into the lesion-induced expression of GIP and its receptor (GIPR), expression profiles of the mRNAs were studied after rat sciatic nerve crush injury in 1) affected lumbar dorsal root ganglia (DRG), 2) spinal cord segments, and 3) proximal and distal nerve fragments by means of quantitative RT-PCR. Our results clearly identified lesion-induced as well as tissue type-specific mRNA regulation of GIP and its receptor. Furthermore, comprehensive immunohistochemical stainings not only confirmed and exceeded the previous observation of neuronal GIP expression but also revealed corresponding GIPR expression, implying putative modulatory functions of GIP/GIPR signaling in adult neurons. In complement, we also observed expression of GIP and its receptor in myelinating Schwann cells and oligodendrocytes. Polarized localization of GIPR in the abaxonal Schwann cell membranes, plasma membrane-associated GIPR expression of satellite cells, and ependymal GIPR expression strongly suggests complex cell type-specific functions of GIP and GIPR in the adult nervous system that are presumably mediated by autocrine and paracrine interactions, respectively. Notably, in vivo analyses with GIPR-deficient mice suggest a critical role of GIP/GIPR signal transduction in promoting spontaneous recovery after nerve crush, insofar as traumatic injury of GIPR-deficient mouse sciatic nerve revealed impaired axonal regeneration compared with wild-type mice.
Resumo:
Obesity is considered a major health problem. However, mechanisms involved and its comorbidities are not elucidated. Recent theories concerning the causes of obesity have focused on a limit to the functional capacity of adipose tissue, comparing it with other vital organs. This assumption has been the central point of interest in our laboratory. We proposed that the failure of adipose tissue is initiated by the difficulty of this tissue to increase its cellularity due to excess in fat contribution, owing to genetic or environmental factors. Nevertheless, why the adipose tissue reduces its capacity to make new adipocytes via mesenchymal cells of the stroma has not yet been elucidated. Thus, we suggest that this tissue ceases fulfilling its main function, the storage of excess fat, thereby affecting some of the key factors involved in lipogenesis, some of which are reviewed in this paper (PPARγ, ROR1, FASN, SCD1, Rab18, BrCa1, ZAG, and FABP4). On the other hand, mechanisms involved in adipose tissue expandability are also impaired, predominating hypertrophy via an increase in apoptosis and a decrease in adipogenesis and angiogenesis. However, adipose tissue failure is only part of this great orchestra, only a chapter of this nightmare.
Resumo:
Ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome, which is characterized by cleft palate and severe defects of the skin, is an autosomal dominant disorder caused by mutations in the gene encoding transcription factor p63. Here, we report the generation of a knock-in mouse model for AEC syndrome (p63(+/L514F) ) that recapitulates the human disorder. The AEC mutation exerts a selective dominant-negative function on wild-type p63 by affecting progenitor cell expansion during ectodermal development leading to a defective epidermal stem cell compartment. These phenotypes are associated with impairment of fibroblast growth factor (FGF) signalling resulting from reduced expression of Fgfr2 and Fgfr3, direct p63 target genes. In parallel, a defective stem cell compartment is observed in humans affected by AEC syndrome and in Fgfr2b(-/-) mice. Restoring Fgfr2b expression in p63(+/L514F) epithelial cells by treatment with FGF7 reactivates downstream mitogen-activated protein kinase signalling and cell proliferation. These findings establish a functional link between FGF signalling and p63 in the expansion of epithelial progenitor cells and provide mechanistic insights into the pathogenesis of AEC syndrome.
Resumo:
This paper presents a pattern recognition method focused on paintings images. The purpose is construct a system able to recognize authors or art styles based on common elements of his work (here called patterns). The method is based on comparing images that contain the same or similar patterns. It uses different computer vision techniques, like SIFT and SURF, to describe the patterns in descriptors, K-Means to classify and simplify these descriptors, and RANSAC to determine and detect good results. The method are good to find patterns of known images but not so good if they are not.
Resumo:
OBJECTIVE: To investigate the influence of obesity on the regulation of myocardial glucose metabolism following protein kinase C (PKC) activation in obese (fa/fa) and lean (Fa/?) Zucker rats. DESIGN: Isolated hearts obtained from 17-week-old lean and obese Zucker rats were perfused with 200 nM phorbol 12-myristate 13-acetate (PMA) for different time periods prior to the evaluation of PKC and GLUT-4 translocation. For metabolic studies isolated hearts from 48 h starved Zucker rats were perfused with an erythrocytes-enriched buffer containing increased concentrations (10-100 nM) of PMA. MEASUREMENTS: Immunodetectable PKC isozymes and GLUT-4 were determined by Western blots. Glucose oxidation and glycolysis were evaluated by measuring the myocardial release of 14CO2 and 3H2O from [U-14C]glucose and [5-3H]glucose, respectively. RESULTS: PMA (200 nM) induced maximal translocation of ventricular PKCalpha from the cytosol to the membranes within 10 min. This translocation was 2-fold lower in the heart from obese rats when compared to lean rats. PMA also induced a significant translocation of ventricular GLUT-4 from the microsomal to the sarcolemmal fraction within 60 min in lean but not in obese rats. Rates of basal cardiac glucose oxidation and glycolysis in obese rats were approximately 2-fold lower than those of lean rats. Perfusion with increasing concentrations of PMA (10-100 nM) led to a significant decrease of cardiac glucose oxidation in lean but not in obese rats. CONCLUSION: Our results show that in the heart of the genetically obese Zucker rat, the impairment in PKCalpha activation is in line with a diminished activation of GLUT-4 as well as with the lack of PMA effect on glucose oxidation.
Resumo:
OBJECTIVE: HIV-infected children have impaired antibody responses after exposure to certain antigens. Our aim was to determine whether HIV-infected children had lower varicella zoster virus (VZV) antibody levels compared with HIV-infected adults or healthy children and, if so, whether this was attributable to an impaired primary response, accelerated antibody loss, or failure to reactivate the memory VZV response. METHODS: In a prospective, cross-sectional and retrospective longitudinal study, we compared antibody responses, measured by enzyme-linked immunosorbent assay (ELISA), elicited by VZV infection in 97 HIV-infected children and 78 HIV-infected adults treated with antiretroviral therapy, followed over 10 years, and 97 age-matched healthy children. We also tested antibody avidity in HIV-infected and healthy children. RESULTS: Median anti-VZV immunoglobulin G (IgG) levels were lower in HIV-infected children than in adults (264 vs. 1535 IU/L; P<0.001) and levels became more frequently unprotective over time in the children [odds ratio (OR) 17.74; 95% confidence interval (CI) 4.36-72.25; P<0.001]. High HIV viral load was predictive of VZV antibody waning in HIV-infected children. Anti-VZV antibodies did not decline more rapidly in HIV-infected children than in adults. Antibody levels increased with age in healthy (P=0.004) but not in HIV-infected children. Thus, antibody levels were lower in HIV-infected than in healthy children (median 1151 IU/L; P<0.001). Antibody avidity was lower in HIV-infected than healthy children (P<0.001). A direct correlation between anti-VZV IgG level and avidity was present in HIV-infected children (P=0.001), but not in healthy children. CONCLUSION: Failure to maintain anti-VZV IgG levels in HIV-infected children results from failure to reactivate memory responses. Further studies are required to investigate long-term protection and the potential benefits of immunization.
Resumo:
We report a 14-year-old boy who presented with vision loss secondary to peripapillary neovascular membrane (PPNVM) as the initial and only symptom of papilledema secondary to idiopathic intracranial hypertension. After one lumbar puncture, visual acuity progressively recovered during the course of 1 week and further improved with the administration of oral acetazolamide. One year after the onset of vision loss, the patient's visual acuity had recovered to baseline measurements. The previously active PPNVM had involuted into a residual peripapillary fibrotic scar. To our knowledge, this is the first report of PPNVM complicating idiopathic intracranial hypertension in a child.
Resumo:
Dyslipidemia is a known risk factor for cardiovascular diseases and may associate with renal injury. Using mouse models with various degrees of hypercholesterolemia and hypertryliceridemia, we investigated the effects of lipids on the renin-angiotensin system (RAS). ApoE-/- mice were fed either a high fat diet (HF-ApoE-/-; mice developed hypertriglyceridemia and severe hypercholesterolemia) or regular chow (R-ApoE(-/-); mice developed less severe hypercholesterolemia only). Renal histopathology in the HF-ApoE-/- revealed massive lipid accumulation especially at the glomerular vascular pole. In these mice plasma renin concentration was significantly reduced (489+/-111 ng/(ml h) versus 1023+/-90 ng/(ml h) in R-ApoE-/- mice) and blood pressure was consequently significantly lower than in R-ApoE-/- (104+/-2 mmHg versus 115+/-2 mmHg, respectively). A model of renin-dependent renovascular hypertension (two-kidney, one clip) was generated and HF-ApoE-/- mice proved unable to increase renin secretion, and blood pressure, in response to diminished renal perfusion as compared to regular chow fed mice (665+/-90 ng/(ml h) versus 2393+/-372 ng/(ml h), respectively and 106+/-3 mmHg versus 140+/-2 mmHg, respectively). Hypertriglyceridemia and severe hypercholesterolemia are associated with renal lipid deposition and impaired renin secretion in ApoE-/- mice exposed to high fat diet. These observations further characterize the phenotype of this widely used mouse model and provide a rationale for the use of these mice to study lipid induced organ damage.
Resumo:
Interaction between brain endocannabinoid (EC) and serotonin (5-HT) systems was investigated by examining 5-HT-dependent behavioural and biochemical responses in CB1 receptor knockout mice. CB1 knockout animals exhibited a significant reduction in the induction of head twitches and paw tremor by the 5-HT2A receptor selective agonist ()DOI, as well as a reduced hypothermic response following administration of the 5-HT1A receptor agonist (±)-8-OH-DPAT. Additionally, exposure to the tail suspension test induced enhanced despair responses in CB1 knockout mice. However, the tricyclic antidepressant imipramine and the 5-HT selective reuptake inhibitor fluoxetine induced similar decreases in the time of immobility in the tail suspension test in CB1 receptor knockout and wild-type mice. No differences were found between both genotypes with regard to 5-HT2A receptor and 5-HT1A receptors levels, measured by autoradiography in different brain areas. However, a significant decrease in the ability of the 5-HT1A receptor agonist (±)-8-OH-DPAT to stimulate 35SGTPS binding was detected in the hippocampal CA1 area of CB1 receptor knockout mice. This study provides evidence that CB1 receptors are involved in the regulation of serotonergic responses mediated by 5-HT2A and 5-HT1A receptors, and suggests that a reduced coupling of 5-HT1A receptors to Gi/o proteins in the hippocampus might be involved in these effects.