982 resultados para vertebre, anterior, wedge, fracture, FEM, LVDT, estensimetri
Resumo:
Al-5 wt pct Si alloy is processed by upset forging in the temperature range 300 K to 800 K and in the strain rate range 0.02 to 200 s−1. The hardness and tensile properties of the product have been studied. A “safe” window in the strain rate-temperature field has been identified for processing of this alloy to obtain maximum tensile ductility in the product. For the above strain rate range, the temperature range of processing is 550 K to 700 K for obtaining high ductility in the product. On the basis of microstructure and the ductility of the product, the temperature-strain rate regimes of damage due to cavity formation at particles and wedge cracking have been isolated for this alloy. The tensile fracture features recorded on the product specimens are in conformity with the above damage mechanisms. A high temperature treatment above ≈600 K followed by fairly fast cooling gives solid solution strengthening in the alloy at room temperature.
Resumo:
A technique to quantify in real time the microstructural changes occurring during mechanical nanoscale fatigue of ultrathin surface coatings has been developed. Cyclic nanoscale loading, with amplitudes less than 100 nm, is achieved with a mechanical probe miniaturized to fit inside a transmission electron microscope (TEM). The TEM tribological probe can be used for nanofriction and nanofatigue testing, with 3D control of the loading direction and simultaneous TEM imaging of the nano-objects. It is demonstrated that fracture of 10-20 nm thick amorphous carbon films on sharp gold asperities, by a single nanoscale shear impact, results in the formation of < 10 nm diameter amorphous carbon filaments. Failure of the same carbon films after cyclic nanofatigue, however, results in the formation of carbon nanostructures with a significant degree of graphitic ordering, including a carbon onion.
Resumo:
An attempt is made to study the fracture behavior of ferrocement beams using J-integral and critical crack opening displacement approaches. Ferrocement beams with three different relative notch depths and different percentages of mesh reinforcement were tested in four-point bending (third-point loading). The experimental results were used to evaluate the apparent J-integral and CODc values. Results show that the apparent J-integral does not seem to follow any particular trend in variation with notch depth, but is sensitive to the increase of mesh reinforcement. Hence, the apparent J-integral appears to be a useful fracture criterion for ferrocement. The computed values of CODt are found to be dependent on the depth of notch and, thus, cannot possibly be considered as a suitable fracture criterion for ferrocement.
Resumo:
The near-tip deformation field in a high-constraint three-point bend specimen of pure aluminium single crystal is studied using in situ electron back-scattered diffraction and optical metallography. The orientation considered has the notch lying on the (0 1 0) plane and the notch front along direction. Results clearly show the occurrence of a kink shear sector boundary at 90° to the notch line on the specimen free surface as predicted by the analytical model of Rice [J.R. Rice, Mech. Mater. 6 (1987) 317].
Resumo:
The changes in the tensile properties and fracture mode brought about by heat treatment of Fe-12Cr-6Al ferritic stainless steel have been studied. A favourable combination of high strength and good ductility is obtained by heating the material at 1370 K for 2 h followed by a water quench. The high-temperature treatment results in carbide dissolution as well as an increase in the grain size. The mechanism of strengthening has been evaluated from the apparent activation energy (28 kJ mol–1) and is identified to be the unpinning of dislocations from the atmosphere of carbon atoms. As the heat-treatment temperature is increased, the fracture behaviour changes from ductile to brittle mode and this is related to the changes in grain size and friction stress.
Resumo:
Background: Falls among hospitalised patients impose a considerable burden on health systems globally and prevention is a priority. Some patient-level interventions have been effective in reducing falls, but others have not. An alternative and promising approach to reducing inpatient falls is through the modification of the hospital physical environment and the night lighting of hospital wards is a leading candidate for investigation. In this pilot trial, we will determine the feasibility of conducting a main trial to evaluate the effects of modified night lighting on inpatient ward level fall rates. We will test also the feasibility of collecting novel forms of patient level data through a concurrent observational sub-study. Methods/design: A stepped wedge, cluster randomised controlled trial will be conducted in six inpatient wards over 14 months in a metropolitan teaching hospital in Brisbane (Australia). The intervention will consist of supplementary night lighting installed across all patient rooms within study wards. The planned placement of luminaires, configurations and spectral characteristics are based on prior published research and pre-trial testing and modification. We will collect data on rates of falls on study wards (falls per 1000 patient days), the proportion of patients who fall once or more, and average length of stay. We will recruit two patients per ward per month to a concurrent observational sub-study aimed at understanding potential impacts on a range of patient sleep and mobility behaviour. The effect on the environment will be monitored with sensors to detect variation in light levels and night-time room activity. We will also collect data on possible patient-level confounders including demographics, pre-admission sleep quality, reported vision, hearing impairment and functional status. Discussion: This pragmatic pilot trial will assess the feasibility of conducting a main trial to investigate the effects of modified night lighting on inpatient fall rates using several new methods previously untested in the context of environmental modifications and patient safety. Pilot data collected through both parts of the trial will be utilised to inform sample size calculations, trial design and final data collection methods for a subsequent main trial.
Resumo:
An attempt has been made experimentally to investigate the acoustic emission (AE) energy release in high-strength concrete (HSC) beams subjected to monotonically increasing load. Acoustic emission energy release during the fracture process of the HSC beams is measured. Stress waves released during the fracture process in materials cause acoustic emissions. AE energy released during the fracture of a notched three-point bend plain concrete beam specimens having 28-day compressive strengths of 50.0 MPa, 69.0 MPa and 78.0 MPa and mortar (cement: sand (1: 4) by weight) specimens are studied. Mortar consists of one part cement and four parts sand by weight. The specimens were tested by a material testing system of 1200 kN capacity employing crack mouth opening displacement control at the rate of 0.0004 mm/s. The fracture energy and the AE energy released during the fracture process of all the tested TPB and mortar specimens are compared and discussed. The observations made in the present experimental study have some applications for monitoring the integrity of structures.
Resumo:
Background: Falls remain the most frequent adverse event reported in hospitals, particularly geriatric rehabilitation wards. Randomised trials reducing fall injuries in hospitals have been elusive. Our previous randomised trial (n = 1206) demonstrated that multimedia education with physiotherapist falls educator support reduced falls among patients with higher cognition levels, but this benefit was offset by a potential increase in falls rates among patients with poor cognition. In the previous trial, hospital staff were blinded to the allocation of individual patients, and only delivered usual care.
Resumo:
The main objective of this study is to evaluate selected geophysical, structural and topographic methods on regional, local, and tunnel and borehole scales, as indicators of the properties of fracture zones or fractures relevant to groundwater flow. Such information serves, for example, groundwater exploration and prediction of the risk of groundwater inflow in underground construction. This study aims to address how the features detected by these methods link to groundwater flow in qualitative and semi-quantitative terms and how well the methods reveal properties of fracturing affecting groundwater flow in the studied sites. The investigated areas are: (1) the Päijänne Tunnel for water-conveyance whose study serves as a verification of structures identified on regional and local scales; (2) the Oitti fuel spill site, to telescope across scales and compare geometries of structural assessment; and (3) Leppävirta, where fracturing and hydrogeological environment have been studied on the scale of a drilled well. The methods applied in this study include: the interpretation of lineaments from topographic data and their comparison with aeromagnetic data; the analysis of geological structures mapped in the Päijänne Tunnel; borehole video surveying; groundwater inflow measurements; groundwater level observations; and information on the tunnel s deterioration as demonstrated by block falls. The study combined geological and geotechnical information on relevant factors governing groundwater inflow into a tunnel and indicators of fracturing, as well as environmental datasets as overlays for spatial analysis using GIS. Geophysical borehole logging and fluid logging were used in Leppävirta to compare the responses of different methods to fracturing and other geological features on the scale of a drilled well. Results from some of the geophysical measurements of boreholes were affected by the large diameter (gamma radiation) or uneven surface (caliper) of these structures. However, different anomalies indicating more fractured upper part of the bedrock traversed by well HN4 in Leppävirta suggest that several methods can be used for detecting fracturing. Fracture trends appear to align similarly on different scales in the zone of the Päijänne Tunnel. For example, similarities of patterns were found between the regional magnetic trends, correlating with orientations of topographic lineaments interpreted as expressions of fracture zones. The same structural orientations as those of the larger structures on local or regional scales were observed in the tunnel, even though a match could not be made in every case. The size and orientation of the observation space (patch of terrain at the surface, tunnel section, or borehole), the characterization method, with its typical sensitivity, and the characteristics of the location, influence the identification of the fracture pattern. Through due consideration of the influence of the sampling geometry and by utilizing complementary fracture characterization methods in tandem, some of the complexities of the relationship between fracturing and groundwater flow can be addressed. The flow connections demonstrated by the response of the groundwater level in monitoring wells to pressure decrease in the tunnel and the transport of MTBE through fractures in bedrock in Oitti, highlight the importance of protecting the tunnel water from a risk of contamination. In general, the largest values of drawdown occurred in monitoring wells closest to the tunnel and/or close to the topographically interpreted fracture zones. It seems that, to some degree, the rate of inflow shows a positive correlation with the level of reinforcement, as both are connected with the fracturing in the bedrock. The following geological features increased the vulnerability of tunnel sections to pollution, especially when several factors affected the same locations: (1) fractured bedrock, particularly with associated groundwater inflow; (2) thin or permeable overburden above fractured rock; (3) a hydraulically conductive layer underneath the surface soil; and (4) a relatively thin bedrock roof above the tunnel. The observed anisotropy of the geological media should ideally be taken into account in the assessment of vulnerability of tunnel sections and eventually for directing protective measures.
Resumo:
Background Studies investigating the relationship between malnutrition and post-discharge mortality following acute hip fracture yield conflicting results. This study aimed to determine whether malnutrition independently predicted 12-month post-fracture mortality after adjusting for clinically relevant covariates. Methods An ethics approved, prospective, consecutive audit was undertaken for all surgically treated hip fracture inpatients admitted to a dedicated orthogeriatric unit (November 2010–October 2011). The 12-month mortality data were obtained by a dual search of the mortality registry and Queensland Health database. Malnutrition was evaluated using the Subjective Global Assessment. Demographic (age, gender, admission residence) and clinical covariates included fracture type, time to surgery, anaesthesia type, type of surgery, post-surgery time to mobilize and post-operative complications (delirium, pulmonary and deep vein thrombosis, cardiac complications, infections). The Charlson Comorbidity Index was retrospectively applied. All diagnoses were confirmed by the treating orthogeriatrician. Results A total of 322 of 346 patients were available for audit. Increased age (P = 0.004), admission from residential care (P < 0.001), Charlson Comorbidity Index (P = 0.007), malnutrition (P < 0.001), time to mobilize >48 h (P < 0.001), delirium (P = 0.003), pulmonary embolism (P = 0.029) and cardiovascular complication (P = 0.04) were associated with 12-month mortality. Logistic regression analysis demonstrated that malnutrition (odds ratio (OR) 2.4 (95% confidence interval (CI) 1.3–4.7, P = 0.007)), in addition to admission from residential care (OR 2.6 (95% CI 1.3–5.3, P = 0.005)) and pulmonary embolism (OR 11.0 (95% CI 1.5–78.7, P = 0.017)), independently predicted 12-month mortality. Conclusions Findings substantiate malnutrition as an independent predictor of 12-month mortality in a representative sample of hip fracture inpatients. Effective strategies to identify and treat malnutrition in hip fracture should be prioritized.
Resumo:
Mathematical models, for the stress analysis of symmetric multidirectional double cantilever beam (DCB) specimen using classical beam theory, first and higher-order shear deformation beam theories, have been developed to determine the Mode I strain energy release rate (SERR) for symmetric multidirectional composites. The SERR has been calculated using the compliance approach. In the present study, both variationally and nonvariationally derived matching conditions have been applied at the crack tip of DCB specimen. For the unidirectional and cross-ply composite DCB specimens, beam models under both plane stress and plane strain conditions in the width direction are applicable with good performance where as for the multidirectional composite DCB specimen, only the beam model under plane strain condition in the width direction appears to be applicable with moderate performance. Among the shear deformation beam theories considered, the performance of higher-order shear deformation beam theory, having quadratic variation for transverse displacement over the thickness, is superior in determining the SERR for multidirectional DCB specimen.
Resumo:
Purpose To examine whether anterior scleral and conjunctival thickness undergoes significant diurnal variation over a 24-hour period. Methods Nineteen healthy young adults (mean age 22 ± 2 years) with minimal refractive error (mean spherical equivalent refraction -0.08 ± 0.39 D), had measures of anterior scleral and conjunctival thickness collected using anterior segment optical coherence tomography (AS-OCT) at seven measurement sessions over a 24-hour period. The thickness of the temporal anterior sclera and conjunctiva were determined at 6 locations (each separated by 0.5 mm) at varying distances from the scleral spur for each subject at each measurement session. Results Both the anterior sclera and conjunctiva were found to undergo significant diurnal variations in thickness over a 24-hour period (both p <0.01). The sclera and conjunctiva exhibited a similar pattern of diurnal change, with a small magnitude thinning observed close to midday, and a larger magnitude thickening observed in the early morning immediately after waking. The amplitude of diurnal thickness change was larger in the conjunctiva (mean amplitude 69 ± 29 μm) compared to the sclera (21 ± 8 μm). The conjunctiva exhibited its smallest magnitude of change at the scleral spur location (mean amplitude 56 ± 17 μm) whereas the sclera exhibited its largest magnitude of change at this location (52 ± 21 μm). Conclusions This study provides the first evidence of diurnal variations occurring in the thickness of the anterior sclera and conjunctiva. Studies requiring precise measures of these anatomical layers should therefore take time of day into consideration. The majority of the observed changes occurred in the early morning immediately after waking and were of larger magnitude in the conjunctiva compared to the sclera. Thickness changes at other times of the day were of smaller magnitude and generally not statistically significant.