964 resultados para vehicle mean speed
Resumo:
Shipboard measurements of eddy covariance dimethylsulfide (DMS) air–sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s−1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air–sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air–sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.
Resumo:
The limited availability of experimental data and their quality have been preventing the development of predictive methods and Computer Aided Molecular Design (CAMD) of ionic liquids (ILs). Based on experimental speed of sound data collected from the literature, the inter-relationship of surface tension (s), density (?), and speed of sound (u) has been examined for imidazolium based ILs containing hexafluorophosphate (PF6), tetrafluoroborate (BF4), bis(trifluoromethanesulphonyl) amide (NTf2), methyl sulphate (MeSO4), ethyl sulphate (EtSO4), and trifluoromethanesulphonate (CF3SO3) anions, covering wide ranges of temperature, 278.15–343.15 K and speed of sound, 1129.0–1851.0 m s-1. The speed of sound was correlated with a modified Auerbach's relation, by using surface tension and density data obtained from volume based predictive methods previously proposed by the authors. It is shown that a good agreement with literature data is obtained. For 133 data points of 14 ILs studied a mean percent deviation (MPD) of 1.96% with a maximum deviation inferior to 5% was observed. The correlations developed here can thus be used to evaluate the speeds of sound of new ionic liquids.
Resumo:
Maintaining the ecosystem is one of the main concerns in this modern age. With the fear of ever-increasing global warming, the UK is one of the key players to participate actively in taking measures to slow down at least its phenomenal rate. As an ingredient to this process, the Springer vehicle was designed and developed for environmental monitoring and pollutant tracking. This special issue paper highlighted the Springer hardware and software architecture including various navigational sensors, a speed controller, and an environmental monitoring unit. In addition, details regarding the modelling of the vessel were outlined based mainly on experimental data. The formulation of a fault tolerant multi-sensor data fusion technique was also presented. Moreover, control strategy based on a linear quadratic Gaussian controller was developed and simulated on the Springer model.
Gaussian controller is developed and simulated on the Springer model.
Resumo:
Previous research on damage detection based on the response of a structure to a moving load has reported decay in accuracy with increasing load speed. Using a 3D vehicle – bridge interaction model, this paper shows that the area under the filtered acceleration response of the bridge increases with increasing damage, even at highway load speeds. Once a datum reading is established, the area under subsequent readings can be monitored and compared with the baseline reading, if an increase is observed it may indicate the presence of damage. The sensitivity of the proposed approach to road roughness and noise is tested in several damage scenarios. The possibility of identifying damage in the bridge by analysing the acceleration response of the vehicle traversing it is also investigated. While vehicle acceleration is shown to be more sensitive to road roughness and noise and therefore less reliable than direct bridge measurements, damage is successfully identified in favourable scenarios.
Resumo:
In the interaction between vehicles, pavements and bridges, it is essential to aim towards a reduction of vehicle axle forces to promote longer pavement life spans and to prevent bridges loads becoming too high. Moreover, as the road surface roughness affects the vehicle dynamic forces, an efficient monitoring of pavement condition is also necessary to achieve this aim. This paper uses a novel algorithm to identify the dynamic interaction forces and pavement roughness from vehicle accelerations in both theoretical simulations and a laboratory experiment; moving force identification theory is applied to a vehicle model for this purpose. Theoretical simulations are employed to evaluate the ability of the algorithm to predict forces over a range of bridge spans and to evaluate the influence of road roughness level on the accuracy of the results. Finally, in addressing the challenge for the real-world problem, the effects of vehicle configuration and speed on the predicted road roughness are also investigated in a laboratory experiment.
Resumo:
Periodic monitoring of structures such as bridges is necessary as their condition can deteriorate due to environmental conditions and ageing, causing the bridge to become unsafe. This monitoring - so called Structural Health Monitoring (SHM) - can give an early warning if a bridge becomes unsafe. This paper investigates an alternative wavelet-based approach for the monitoring of bridge structures which consists of the use of a vehicle fitted with accelerometers on its axles. A simplified vehicle-bridge interaction model is used in theoretical simulations to examine the effectiveness of the approach in detecting damage in the bridge. The accelerations of the vehicle are processed using a continuous wavelet transform, allowing a time-frequency analysis to be performed. This enables the identification of both the existence and location of damage from the vehicle response. Based on this analysis, a damage index is established. A parametric study is carried out to investigate the effect of parameters such as the bridge span length, vehicle speed, vehicle mass, damage level, signal noise level and road surface roughness on the accuracy of results. In addition, a laboratory experiment is carried out to validate the results of the theoretical analysis and assess the ability of the approach to detect changes in the bridge response.
Resumo:
In this paper the tracking system used to perform a scaled vehicle-barrier crash test is reported. The scaled crash test was performed as part of a wider project aimed at designing a new safety barrier making use of natural building materials. The scaled crash test was designed and performed as a proof of concept of the new mass-based safety barriers and the study was composed of two parts: the scaling technique and of a series of performed scaled crash tests. The scaling method was used for 1) setting the scaled test impact velocity so that energy dissipation and momentum transferring, from the car to the barrier, can be reproduced and 2) predicting the acceleration, velocity and displacement values occurring in the full-scale impact from the results obtained in a scaled test. To achieve this goal the vehicle and barrier displacements were to be recorded together with the vehicle accelerations and angular velocities. These quantities were measured during the tests using acceleration sensors and a tracking system. The tracking system was composed of a high speed camera and a set of targets to measure the vehicle linear and angular velocities. A code was developed to extract the target velocities from the videos and the velocities obtained were then compared with those obtained integrating the accelerations provided by the sensors to check the reliability of the method.
Resumo:
Highway structures such as bridges are subject to continuous degradation primarily due to ageing and environmental factors. A rational transport policy requires the monitoring of this transport infrastructure to provide adequate maintenance and guarantee the required levels of transport service and safety. In Europe, this is now a legal requirement - a European Directive requires all member states of the European Union to implement a Bridge Management System. However, the process is expensive, requiring the installation of sensing equipment and data acquisition electronics on the bridge. This paper investigates the use of an instrumented vehicle fitted with accelerometers on its axles to monitor the dynamic behaviour of bridges as an indicator of its structural condition. This approach eliminates the need for any on-site installation of measurement equipment. A simplified half-car vehicle-bridge interaction model is used in theoretical simulations to test the possibility of extracting the dynamic parameters of the bridge from the spectra of the vehicle accelerations. The effect of vehicle speed, vehicle mass and bridge span length on the detection of the bridge dynamic parameters are investigated. The algorithm is highly sensitive to the condition of the road profile and simulations are carried out for both smooth and rough profiles
Resumo:
This paper investigates the feasibility of using an instrumented vehicle to detect bridge dynamic parameters, such as natural frequency and structural damping, in a scaled laboratory experiment. In the experiment, a scaled vehicle model crosses a steel girder which has been adopted as the bridge model. The bridge model also includes a scaled road surface profile. The effects of varying vehicle model mass and speed are investigated. The damping of the girder is also varied. The bridge frequency and changes in damping are detected in the vehicle acceleration response in the presence of a rough road surface profile.
Resumo:
Roadside safety barriers designs are tested with passenger cars in Europe using standard EN1317 in which the impact angle for normal, high and very high containment level tests is 20°. In comparison to EN1317, the US standard MASH has higher impact angles for cars and pickups (25°) and different vehicle masses. Studies in Europe (RISER) and the US have shown values for the 90th percentile impact angle of 30°–34°. Thus, the limited evidence available suggests that the 20° angle applied in EN 1317 may be too low.
The first goal of this paper is to use the US NCHRP database (Project NCHRP 17–22) to assess the distribution of impact angle and collision speed in recent ROR accidents. Second, based on the findings of the statistical analysis and on analysis of impact angles and speeds in the literature, an LS-DYNA finite element analysis was carried out to evaluate the normal containment level of concrete barriers in non-standard collisions. The FE model was validated against a crash test of a portable concrete barrier carried out at the UK Transport Research Laboratory (TRL).
The accident data analysis for run-off road accidents indicates that a substantial proportion of accidents have an impact angle in excess of 20°. The baseline LS-DYNA model showed good comparison with experimental acceleration severity index (ASI) data and the parametric analysis indicates a very significant influence of impact angle on ASI. Accordingly, a review of European run-off road accidents and the configuration of EN 1317 should be performed.
Resumo:
Nos últimos anos, o número de vítimas de acidentes de tráfego por milhões de habitantes em Portugal tem sido mais elevado do que a média da União Europeia. Ao nível nacional torna-se premente uma melhor compreensão dos dados de acidentes e sobre o efeito do veículo na gravidade do mesmo. O objetivo principal desta investigação consistiu no desenvolvimento de modelos de previsão da gravidade do acidente, para o caso de um único veículo envolvido e para caso de uma colisão, envolvendo dois veículos. Além disso, esta investigação compreendeu o desenvolvimento de uma análise integrada para avaliar o desempenho do veículo em termos de segurança, eficiência energética e emissões de poluentes. Os dados de acidentes foram recolhidos junto da Guarda Nacional Republicana Portuguesa, na área metropolitana do Porto para o período de 2006-2010. Um total de 1,374 acidentes foram recolhidos, 500 acidentes envolvendo um único veículo e 874 colisões. Para a análise da segurança, foram utilizados modelos de regressão logística. Para os acidentes envolvendo um único veículo, o efeito das características do veículo no risco de feridos graves e/ou mortos (variável resposta definida como binária) foi explorado. Para as colisões envolvendo dois veículos foram criadas duas variáveis binárias adicionais: uma para prever a probabilidade de feridos graves e/ou mortos num dos veículos (designado como veículo V1) e outra para prever a probabilidade de feridos graves e/ou mortos no outro veículo envolvido (designado como veículo V2). Para ultrapassar o desafio e limitações relativas ao tamanho da amostra e desigualdade entre os casos analisados (apenas 5.1% de acidentes graves), foi desenvolvida uma metodologia com base numa estratégia de reamostragem e foram utilizadas 10 amostras geradas de forma aleatória e estratificada para a validação dos modelos. Durante a fase de modelação, foi analisado o efeito das características do veículo, como o peso, a cilindrada, a distância entre eixos e a idade do veículo. Para a análise do consumo de combustível e das emissões, foi aplicada a metodologia CORINAIR. Posteriormente, os dados das emissões foram modelados de forma a serem ajustados a regressões lineares. Finalmente, foi desenvolvido um indicador de análise integrada (denominado “SEG”) que proporciona um método de classificação para avaliar o desempenho do veículo ao nível da segurança rodoviária, consumos e emissões de poluentes.Face aos resultados obtidos, para os acidentes envolvendo um único veículo, o modelo de previsão do risco de gravidade identificou a idade e a cilindrada do veículo como estatisticamente significativas para a previsão de ocorrência de feridos graves e/ou mortos, ao nível de significância de 5%. A exatidão do modelo foi de 58.0% (desvio padrão (D.P.) 3.1). Para as colisões envolvendo dois veículos, ao prever a probabilidade de feridos graves e/ou mortos no veículo V1, a cilindrada do veículo oposto (veículo V2) aumentou o risco para os ocupantes do veículo V1, ao nível de significância de 10%. O modelo para prever o risco de gravidade no veículo V1 revelou um bom desempenho, com uma exatidão de 61.2% (D.P. 2.4). Ao prever a probabilidade de feridos graves e/ou mortos no veículo V2, a cilindrada do veículo V1 aumentou o risco para os ocupantes do veículo V2, ao nível de significância de 5%. O modelo para prever o risco de gravidade no veículo V2 também revelou um desempenho satisfatório, com uma exatidão de 40.5% (D.P. 2.1). Os resultados do indicador integrado SEG revelaram que os veículos mais recentes apresentam uma melhor classificação para os três domínios: segurança, consumo e emissões. Esta investigação demonstra que não existe conflito entre a componente da segurança, a eficiência energética e emissões relativamente ao desempenho dos veículos.
Resumo:
The purpose of the study was to investigate the relative contribution of skate blade properties to on-ice skating speed. Thirty-two male ice hockey players (mean age = 19±2.65 yrs.) representing the Ontario Minor Hockey Association (OMHA; Midget AAA and Junior), Canadian Inter University Sport (CIS: Varsity), Ontario hockey league (OHL) and East Coast Hockey League (ECHL), and the playing positions of forwards (n=18) and defense (n=14) were recruited to participate. Skate related equipment worn by the players for the purpose of the research was documented and revealed that 80% of the players wore Bauer skates, Tuuk blade holders and LS2 skate blades. Subjects completed a battery of eight on-ice skating drills used to measure and compare two aspects of skating speed; acceleration [T1(s)] and total time to complete each drill [TT(s)] while skating on three skate blade conditions. The drills represented skills used in the game of hockey, both in isolation (e.g., forward skating, backward skating, stops and starts, and cornering) and in sequence to simulate the combination of skills used in a shift of game play. The three blade conditions consisted of (i) baseline, represented by the blades worn by the player throughout their current season of play; (ii) experimental blades (EB), represented by brand name experimental blades with manufacturers radius of contour and a standardized radius of hollow; and (iii) customized experimental blades (CEB), represented by the same brand name experimental blades sharpened to the players’ preference as identified in the baseline condition. No significant differences were found in acceleration time [T1(s)] or total time to complete [TT(s)] the isolated drills across blade conditions; however significant differences were revealed in both T1(s) and TT(s) measured during the execution of the sequenced drill across blade conditions. A iii Bonferroni post hoc test revealed that players skated significantly faster when skating on the CEB condition compared to the baseline condition (p≤.05). A questionnaire assessing subjects perceived comfort, confidence and effort expended while skating on the experimental blades revealed that players were significantly more comfortable when skating on the CEB versus the EB condition (p≤.05). Outcomes of the study provide evidence to suggest that the experimental skate blades customized with the players preferred blade sharpening characteristics results in faster skating speed in a combination drill representing skills performed in gameplay.
Resumo:
One of the primary goals of the Center for Integrated Space Weather Modeling (CISM) effort is to assess and improve prediction of the solar wind conditions in near‐Earth space, arising from both quasi‐steady and transient structures. We compare 8 years of L1 in situ observations to predictions of the solar wind speed made by the Wang‐Sheeley‐Arge (WSA) empirical model. The mean‐square error (MSE) between the observed and model predictions is used to reach a number of useful conclusions: there is no systematic lag in the WSA predictions, the MSE is found to be highest at solar minimum and lowest during the rise to solar maximum, and the optimal lead time for 1 AU solar wind speed predictions is found to be 3 days. However, MSE is shown to frequently be an inadequate “figure of merit” for assessing solar wind speed predictions. A complementary, event‐based analysis technique is developed in which high‐speed enhancements (HSEs) are systematically selected and associated from observed and model time series. WSA model is validated using comparisons of the number of hit, missed, and false HSEs, along with the timing and speed magnitude errors between the forecasted and observed events. Morphological differences between the different HSE populations are investigated to aid interpretation of the results and improvements to the model. Finally, by defining discrete events in the time series, model predictions from above and below the ecliptic plane can be used to estimate an uncertainty in the predicted HSE arrival times.
Resumo:
The overall operation and internal complexity of a particular production machinery can be depicted in terms of clusters of multidimensional points which describe the process states, the value in each point dimension representing a measured variable from the machinery. The paper describes a new cluster analysis technique for use with manufacturing processes, to illustrate how machine behaviour can be categorised and how regions of good and poor machine behaviour can be identified. The cluster algorithm presented is the novel mean-tracking algorithm, capable of locating N-dimensional clusters in a large data space in which a considerable amount of noise is present. Implementation of the algorithm on a real-world high-speed machinery application is described, with clusters being formed from machinery data to indicate machinery error regions and error-free regions. This analysis is seen to provide a promising step ahead in the field of multivariable control of manufacturing systems.
Resumo:
The Gram-Schmidt (GS) orthogonalisation procedure has been used to improve the convergence speed of least mean square (LMS) adaptive code-division multiple-access (CDMA) detectors. However, this algorithm updates two sets of parameters, namely the GS transform coefficients and the tap weights, simultaneously. Because of the additional adaptation noise introduced by the former, it is impossible to achieve the same performance as the ideal orthogonalised LMS filter, unlike the result implied in an earlier paper. The authors provide a lower bound on the minimum achievable mean squared error (MSE) as a function of the forgetting factor λ used in finding the GS transform coefficients, and propose a variable-λ algorithm to balance the conflicting requirements of good tracking and low misadjustment.