977 resultados para vapor deposition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin silicon nitride films were prepared at 350 degrees C by inductively coupled plasma chemical vapor deposition on Si(100) substrates under different NH(3)/SiH(4) or N(2)/SiH(4) gas mixture. The chemical composition and bonding structure of the deposited films were investigated as a function of the process parameters, such as the gas flow ratio NH(3)/SiH(4) or N(2)/SiH(4) and the RF power, using X-ray photoelectron spectroscopy (XPS). The gas flow ratio was 1.4, 4.3, 7.2 or 9.5 and the RF power, 50 or 100 W. Decomposition results of Si 2p XPS spectra indicated the presence of bulk Si, under-stoichiometric nitride, stoichiometric nitride Si(3)N(4), oxynitride SiN(x)O(y), and stoichiometric oxide SiO(2), and the amounts of these compounds were strongly influenced by the two process parameters. These results were consistent with those obtained from N 1s XPS spectra. The chemical composition ratio N/Si in the film increased with increasing the gas flow ratio until the gas flow ratio reached 4.3, reflecting the high reactivity of nitrogen, and stayed almost constant for further increase in gas flow ratio, the excess nitrogen being rejected from the growing film. A considerable and unexpected incorporation of contaminant oxygen and carbon into the depositing film was observed and attributed to their high chemical reactivity. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to compare the micromorphology of CVD diamond tips coupled to ultrasound with conventional high speed diamond tips after cavity preparations, and to measure the width and depth of the cavities obtained. Two hundred bovine teeth were divided into 20 subgroups. Each of the diamond tips (10 CVD and 10 conventional) were used to prepare 10 standardized cavities, using an apparatus that controlled the time (t: 27 s), speed (5.3 mm/s) and load (0.012 KGF) of the tip against the teeth during preparation. The unused and the used (after one, five and 10 preparations) tips were analyzed by scanning electronic microscopy. The images were randomly assessed by 3 examiners with regard to the presence or absence of micromorphologic alterations. Cavity measurements were made after visualization under a stereoscopic microscope. Cavity widths and depths were analyzed by the ANOVA Factorial test (p < 0.05). The CVD diamond tips presented less wear than the conventional tips after all the cavity preparations performed, but produced shallower cavities that were equivalent in width to those made by conventional tips after the fifth preparation. CVD diamond tips may be suggested as an alternative to conventional diamond tips due to their conservative preparation and greater longevity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-walled carbon nanotubes (MWNT) were produced by chemical vapor deposition using yttria-stabilized zirconia/nickel (YSZ/Ni) catalysts. The catalysts were obtained by a liquid mixture technique that resulted in fine dispersed nanoparticles of NiO supported in the YSZ matrix. High quality MWNT having smooth walls, few defects, and low amounts of by-products such as amorphous carbon were obtained, even from catalysts with large Ni concentrations (> 50 wt.%). By adjusting the experimental parameters, such as flux of the carbon precursor (ethylene) and Ni concentration, both the MWNT morphology and the process yield could be controlled. The resulting YSZ/Ni/MWNT composites can be interesting due to their mixed ionic-electronic transport properties, which could be useful in electrochemical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films were deposited by plasma enhanced chemical vapor deposition from titanium (IV) ethoxide (TEOT)-oxygen-helium mixtures. Actinometric optical emission spectroscopy was used to obtain the relative plasma concentrations of the species H, CH, O and CO as a function of the percentage of oxygen in the feed, R(ox). The concentrations of these species rise with increasing R(ox) and tend to fall for R(ox) greater than about 45%. As revealed by a strong decline in the emission intensity of the actinometer Ar as R(ox) was increased, the electron mean energy or density (or both) decreased as greater proportions of oxygen were fed to the chamber. This must tend to reduce gas-phase fragmentation of the monomer by plasma electrons. As the TEOT flow rate was fixed, however, and since the species H and CH do not contain oxygen, the rise in their plasma concentrations with increasing R(ox) is explained only by intermediate reactions involving oxygen or oxygen-containing species. Transmission infrared (IRS) and X-ray photoelectron (XPS) spectroscopies were employed to investigate film structure and composition. The presence of CH(2), CH(3), C=C, C-O and C=O groups was revealed by IRS. In addition, the presence of C-O and C=O groups was confirmed by XPS, which also revealed titanium in the +4 valence state. The Ti content of the films, however, was found to be much less than that of the monomer material itself. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diverse amorphous hydrogenated carbon and similar films containing additional elements were produced by Plasma Enhanced Chemical Vapor Deposition (PECVD) and by Plasma Immersion Ion Implantation and Deposition (PIIID). Thus a-C:H, a-C:H:F, a-C:H:N, a-C:H:Cl and a-C:H:O:Si were obtained, starting from the same feed gases, using both techniques. The same deposition system supplied with radiofrequency (RF) power was used to produce all the films. A cylindrical stainless steel chamber equipped with circular electrodes mounted horizontally was employed. RF power was fed to the upper electrode; substrates were placed on the lower electrode. For PIIID negative high tension pulses were also applied to the lower electrode. Raman spectroscopy confirmed that all the films are amorphous. Chemical characterization of each pair of films was undertaken using Infrared Reflection Absorption Spectroscopy and X-ray Photoelectron Spectroscopy. The former revealed the presence of specific structures, such as C-H, C-O, O-H. The latter allowed calculation of the ratio of hetero-atoms to carbon atoms in the films, e. g. F:C, N:C, and Si:C. Only relatively small differences in elemental composition were detected between films produced by the two methods. The deposition rate in PIIID is generally reduced in relation to that of PECVD; for a-C:H:Cl films the reduction factor is almost four.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fabrication of boring tools (burrs) for dentistry with the use of a hot-filament chemical vapor deposition (CVD) system, to form the diamond abrading structure, is reported here. The diamond was synthesized from a methane/freon gas mixture diluted in hydrogen. Comparative drilling tests with conventional diamond burrs and the CVD diamond burrs in borosilicate glasses demonstrated a lifetime more than 20 times larger for the CVD diamond burrs. Also, heat flow experiments in dentine showed that the CVD diamond burrs induce temperature gradients of the same order as the conventional ones. These characteristics of the CVD diamond burrs are highly desirable for odontological applications where the burrs' lifetime and the low temperature processing are essential to the quality and comfort of the treatment. © 1996 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface morphology changes induced by argon laser irradiation (514 nm) on disperse red 13 (DR13) films prepared by physical vapor deposition (PVD) were investigated. Atomic force microscopy was used to characterize the irradiated sample for different periods of irradiation. Needle-shape structures are observed which are attributed to the symmetry of DR13 molecules. The film becomes increasingly closely packed with the irradiation, with lower root mean square roughness for long exposure times. This is due to photoisomerization of DR13 molecules and probably heating of the sample, which can provide the required mobility for the molecular rearrangement. The rearrangement is such that voids in the film are filled in upon irradiating the sample, thus decreasing the film roughness and increasing the packing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diverse amorphous hydrogenated carbon-based films (a-C:H, a-C:H:F, a-C:H:N, a-C:H:Cl and a-C:H:Si:O) were obtained by radiofrequency plasma enhanced chemical vapor deposition (PECVD) and plasma immersion ion implantation and deposition (PIIID). The same precursors were used in the production of each pair of each type of film, such as a-C:H, using both PECVD and PIIID. Optical properties, namely the refractive index, n, absorption coefficient, α, and optical gap, ETauc, of these films were obtained via transmission spectra in the ultraviolet-visible near-infrared range (wavelengths from 300 to 3300 nm). Film hardness, elastic modulus and stiffness were obtained as a function of depth using nano-indentation. Surface energy values were calculated from liquid drop contact angle data. Film roughness and morphology were assessed using atomic force microscopy (AFM). The PIIID films were usually thinner and possessed higher refractive indices than the PECVD films. Determined refractive indices are consistent with literature values for similar types of films. Values of ETauc were increased in the PIIID films compared to the PECVD films. An exception was the a-C:H:Si:O films, for which that obtained by PIIID was thicker and exhibited a decreased ETauc. The mechanical properties - hardness, elastic modulus and stiffness - of films produced by PECVD and PIIID generally present small differences. An interesting effect is the increase in the hardness of a-C:H:Cl films from 1.0 to 3.0 GPa when ion implantation is employed. Surface energy correlates well with surface roughness. The implanted films are usually smoother than those obtained by PECVD. ©2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variable angle of incidence spectroscopic ellipsometry was used to determine the optical constants near the band edge of boron carbide (B5C) thin films deposited on glass and n-type Si(111) via plasma-enhanced chemical-vapor deposition. The index of refraction n, the extinction coefficient k, and the absorption coefficient are reported in the photon energy spectrum between 1.24 and 4 eV. Ellipsometry analysis of B5C films on silicon indicates a graded material, while the optical constants of B5C on glass are homogeneous. Line shape analyses of absorption data for the films on glass indicate an indirect transition at approximately 0.75 eV and a direct transition at about 1.5 eV. ©1996 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A set of optimized deposition conditions for the inner wall coating of fused silica tubes with amorphous selenium was elaborated. The method is based on the vapor transport deposition of pure elemental selenium on a cooled substrate held at liquid nitrogen temperatures. Morphological and structural examination of the deposited layer was performed by optical microscopy and X-ray diffraction studies. Neutron activated selenium was used to monitor the deposition pattern and its stability under high gas flows. Monte Carlo simulations allowed the estimation of the different Se species composing the amorphous phase, at the given experimental deposition conditions. The versatility of the coating method presented in this work allows for the coating of tubes of different lengths and diameters, opening the way for several applications of amorphous selenium films in various fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta Tesis Doctoral se centra en la investigación del proceso de producción de polisilicio para aplicaciones fotovoltaicas (FV) por la vía química; mediante procesos de depósito en fase vapor (CVD). El polisilicio para la industria FV recibe el nombre de silicio de grado solar (SoG Si). Por un lado, el proceso que domina hoy en día la producción de SoG Si está basado en la síntesis, destilación y descomposición de triclorosilano (TCS) en un reactor CVD -denominado reactor Siemens-. El material obtenido mediante este proceso es de muy alta pureza, pero a costa de un elevado consumo energético. Así, para alcanzar los dos principales objetivos de la industria FV basada en silicio, bajos costes de producción y bajo tiempo de retorno de la energía invertida en su fabricación, es esencial disminuir el consumo energético de los reactores Siemens. Por otro lado, una alternativa al proceso Siemens considera la descomposición de monosilano (MS) en un reactor de lecho fluidizado (FBR). Este proceso alternativo tiene un consumo energético mucho menor que el de un reactor Siemens, si bien la calidad del material resultante es también menor; pero ésta puede ser suficiente para la industria FV. A día de hoy los FBR deben aún abordar una serie de retos para que su menor consumo energético sea una ventaja suficiente comparada con otras desventajas de estos reactores. En resumen, la investigación desarrollada se centra en el proceso de depósito de polysilicio por CVD a partir de TCS -reactor Siemens-; pero también se investiga el proceso de producción de SoG Si en los FBR exponiendo las fortalezas y debilidades de esta alternativa. Para poder profundizar en el conocimiento del proceso CVD para la producción de polisilicio es clave el conocimiento de las reacciones químicas fundamentales y cómo éstas influencian la calidad del producto resultante, al mismo tiempo que comprender los fenómenos responsables del consumo energético. Por medio de un reactor Siemens de laboratorio en el que se llevan a cabo un elevado número de experimentos de depósito de polisilicio de forma satisfactoria se adquiere el conocimiento previamente descrito. Se pone de manifiesto la complejidad de los reactores CVD y de los problemas asociados a la pérdidas de calor de estos procesos. Se identifican las contribuciones a las pérdidas de calor de los reactores CVD, éstas pérdidas de calor son debidas principalmente a los fenómenos de radiación y, conducción y convección vía gases. En el caso de los reactores Siemens el fenómeno que contribuye en mayor medida al alto consumo energético son las pérdidas de calor por radiación, mientras que en los FBRs tanto la radiación como el calor transferido por transporte másico contribuyen de forma importante. Se desarrolla un modelo teórico integral para el cálculo de las pérdidas de calor en reactores Siemens. Este modelo está formado a su vez por un modelo para la evaluación de las pérdidas de calor por radiación y modelos para la evaluación de las pérdidas de calor por conducción y convección vía gases. Se ponen de manifiesto una serie de limitaciones del modelo de pérdidas de calor por radiación, y se desarrollan una serie de modificaciones que mejoran el modelo previo. El modelo integral se valida por medio un reactor Siemens de laboratorio, y una vez validado se presenta su extrapolación a la escala industrial. El proceso de conversión de TCS y MS a polisilicio se investiga mediante modelos de fluidodinámica computacional (CFD). Se desarrollan modelados CFD para un reactor Siemens de laboratorio y para un prototipo FBR. Los resultados obtenidos mediante simulación son comparados, en ambos casos, con resultados experimentales. Los modelos desarrollados se convierten en herramientas para la identificación de aquellos parámetros que tienen mayor influencia en los procesos CVD. En el caso del reactor Siemens, ambos modelos -el modelo integral y el modelado CFD permiten el estudio de los parámetros que afectan en mayor medida al elevado consumo energético, y mediante su análisis se sugieren modificaciones para este tipo de reactores que se traducirían en un menor número de kilovatios-hora consumidos por kilogramo de silicio producido. Para el caso del FBR, el modelado CFD permite analizar el efecto de una serie de parámetros sobre la distribución de temperaturas en el lecho fluidizado; y dicha distribución de temperaturas está directamente relacionada con los principales retos de este tipo de reactores. Por último, existen nuevos conceptos de depósito de polisilicio; éstos se aprovechan de la ventaja teórica de un mayor volumen depositado por unidad de tiempo -cuando una mayor superficie de depósito está disponible- con el objetivo de reducir la energía consumida por los reactores Siemens. Estos conceptos se exploran mediante cálculos teóricos y pruebas en el reactor Siemens de laboratorio. ABSTRACT This Doctoral Thesis comprises research on polysilicon production for photovoltaic (PV) applications through the chemical route: chemical vapor deposition (CVD) process. PV polysilicon is named solar grade silicon (SoG Si). On the one hand, the besetting CVD process for SoG Si production is based on the synthesis, distillation, and decomposition of thriclorosilane (TCS) in the so called Siemens reactor; high purity silicon is obtained at the expense of high energy consumption. Thus, lowering the energy consumption of the Siemens process is essential to achieve the two wider objectives for silicon-based PV technology: low production cost and low energy payback time. On the other hand, a valuable variation of this process considers the use of monosilane (MS) in a fluidized bed reactor (FBR); lower output material quality is obtained but it may fulfil the requirements for the PV industry. FBRs demand lower energy consumption than Siemens reactors but further research is necessary to address the actual challenges of these reactors. In short, this work is centered in polysilicon CVD process from TCS -Siemens reactor-; but it also offers insights on the strengths and weaknesses of the FBR for SoG Si production. In order to aid further development in polysilicon CVD is key the understanding of the fundamental reactions and how they influence the product quality, at the same time as to comprehend the phenomena responsible for the energy consumption. Experiments conducted in a laboratory Siemens reactor prove the satisfactory operation of the prototype reactor, and allow to acquire the knowledge that has been described. Complexity of the CVD reactors is stated and the heat loss problem associated with polysilicon CVD is addressed. All contributions to the energy consumption of Siemens reactors and FBRs are put forward; these phenomena are radiation and, conduction and convection via gases heat loss. In a Siemens reactor the major contributor to the energy consumption is radiation heat loss; in case of FBRs radiation and heat transfer due to mass transport are both important contributors. Theoretical models for radiation, conduction and convection heat loss in a Siemens reactor are developed; shaping a comprehensive theoretical model for heat loss in Siemens reactors. Limitations of the radiation heat loss model are put forward, and a novel contribution to the existing model is developed. The comprehensive model for heat loss is validated through a laboratory Siemens reactor, and results are scaled to industrial reactors. The process of conversion of TCS and MS gases to solid polysilicon is investigated by means of computational fluid-dynamics models. CFD models for a laboratory Siemens reactor and a FBR prototype are developed. Simulated results for both CVD prototypes are compared with experimental data. The developed models are used as a tool to investigate the parameters that more strongly influence both processes. For the Siemens reactors, both, the comprehensive theoretical model and the CFD model allow to identify the parameters responsible for the great power consumption, and thus, suggest some modifications that could decrease the ratio kilowatts-hour per kilogram of silicon produced. For the FBR, the CFD model allows to explore the effect of a number of parameters on the thermal distribution of the fluidized bed; that is the main actual challenge of these type of reactors. Finally, there exist new deposition surface concepts that take advantage of higher volume deposited per time unit -when higher deposition area is available- trying to reduce the high energy consumption of the Siemens reactors. These novel concepts are explored by means of theoretical calculations and tests in the laboratory Siemens prototype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we investigate the parameters used in the MOCVD growth of GaAsN epilayers on GaAs substrates and some of their microstructures and optical properties. The N incorporation was found to mainly depend on the growth temperature and the fractional 1,1-dimethylhydrazine molar flow. A thin highly strained interface layer was observed between GaAsN and GaAs, which, contrary to previously published results, was not N enriched. The low-temperature (10 K) photoluminescence spectra were composed of several emissions that we attribute to a combination of interband transition and transitions involving localized defect states. (C) 2004 Elsevier B.V. All rights reserved.