871 resultados para value stream analysis


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Three sympatric species of Gymnotus from the Fundo stream, a small tributary of the Sapucai river, Minas Gerais State, Brazil, were studied in relation to their karyology. Gymnotus sylvius presented 2n=40 chromosomes (36 m/sm+4 st/a), Gymnotus sp. presented 2n=50 (26 m/sm+ 24 st/a) and Gymnotus paraguensis had 2n=54 (50 m/sm+4 st/a). C-banding demonstrated positively stained heterochromatic blocks in the centromeric position of few chromosomes on G. sylvius and in the centromeric region of all chromosomes on G. paraguensis samples. The nucleolus organizer region (NOR) was located on the short arm of one st chromosome pair in G. sylvius and Gymnotus sp., and in the interstitial position on the short arm of the pair number one and below the centromere on a third chromosome on G. paraguensis. The cytogenetic data obtained indicate that Gymnotus sp. represent a new Gymnotus specie with a karyotypic constitution never observed on others species from this genus. Some aspects related to the chromosome diversification of these Gymnotus are discussed. © 2007 The Japan Mendel Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this article is to propose a methodological approach to analyse how the positioning of actors in an interorganisational network can influence the elements of value creation. This study fills a gap in the existing literature by exploring the relationship between the positioning of actors and the value creation in a context of interorganisational networks. The case study method was employed and the data was obtained from four companies of an interorganisational network, located in Brazil, which produces earthmoving equipments. The central actor in this network is benefited through access to resources, power and information of the other network actors. The centrality position seems to help this company in the absorption and diffusion of knowledge among the other network actors. The research indicates, that a dense core (through strong ties) and redundancy (for triangulation and knowledge absorption), benefited the following value creation elements: tangible; intangible; services and economic.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The contribution of wastewater from a tannery industry to the pollution of a stream was investigated. The main parameters studied were biochemical oxygen demand, chemical oxygen demand, chromium, dissolved oxygen, fecal and total conforms, nitrogen, oils and greases, pH, phosphorous, sulfides, suspended solids, turbidity, and volatile solids. Three sampling points were located: (I) at the discharge point of tannery wastewater, (2) 50 m upstream, and (3) 80 m downstream of discharge point. Also was investigated the pollution at the stream source.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In such territories where food production is mostly scattered in several small / medium size or even domestic farms, a lot of heterogeneous residues are produced yearly, since farmers usually carry out different activities in their properties. The amount and composition of farm residues, therefore, widely change during year, according to the single production process periodically achieved. Coupling high efficiency micro-cogeneration energy units with easy handling biomass conversion equipments, suitable to treat different materials, would provide many important advantages to the farmers and to the community as well, so that the increase in feedstock flexibility of gasification units is nowadays seen as a further paramount step towards their wide spreading in rural areas and as a real necessity for their utilization at small scale. Two main research topics were thought to be of main concern at this purpose, and they were therefore discussed in this work: the investigation of fuels properties impact on gasification process development and the technical feasibility of small scale gasification units integration with cogeneration systems. According to these two main aspects, the present work was thus divided in two main parts. The first one is focused on the biomass gasification process, that was investigated in its theoretical aspects and then analytically modelled in order to simulate thermo-chemical conversion of different biomass fuels, such as wood (park waste wood and softwood), wheat straw, sewage sludge and refuse derived fuels. The main idea is to correlate the results of reactor design procedures with the physical properties of biomasses and the corresponding working conditions of gasifiers (temperature profile, above all), in order to point out the main differences which prevent the use of the same conversion unit for different materials. At this scope, a gasification kinetic free model was initially developed in Excel sheets, considering different values of air to biomass ratio and the downdraft gasification technology as particular examined application. The differences in syngas production and working conditions (process temperatures, above all) among the considered fuels were tried to be connected to some biomass properties, such elementary composition, ash and water contents. The novelty of this analytical approach was the use of kinetic constants ratio in order to determine oxygen distribution among the different oxidation reactions (regarding volatile matter only) while equilibrium of water gas shift reaction was considered in gasification zone, by which the energy and mass balances involved in the process algorithm were linked together, as well. Moreover, the main advantage of this analytical tool is the easiness by which the input data corresponding to the particular biomass materials can be inserted into the model, so that a rapid evaluation on their own thermo-chemical conversion properties is possible to be obtained, mainly based on their chemical composition A good conformity of the model results with the other literature and experimental data was detected for almost all the considered materials (except for refuse derived fuels, because of their unfitting chemical composition with the model assumptions). Successively, a dimensioning procedure for open core downdraft gasifiers was set up, by the analysis on the fundamental thermo-physical and thermo-chemical mechanisms which are supposed to regulate the main solid conversion steps involved in the gasification process. Gasification units were schematically subdivided in four reaction zones, respectively corresponding to biomass heating, solids drying, pyrolysis and char gasification processes, and the time required for the full development of each of these steps was correlated to the kinetics rates (for pyrolysis and char gasification processes only) and to the heat and mass transfer phenomena from gas to solid phase. On the basis of this analysis and according to the kinetic free model results and biomass physical properties (particles size, above all) it was achieved that for all the considered materials char gasification step is kinetically limited and therefore temperature is the main working parameter controlling this step. Solids drying is mainly regulated by heat transfer from bulk gas to the inner layers of particles and the corresponding time especially depends on particle size. Biomass heating is almost totally achieved by the radiative heat transfer from the hot walls of reactor to the bed of material. For pyrolysis, instead, working temperature, particles size and the same nature of biomass (through its own pyrolysis heat) have all comparable weights on the process development, so that the corresponding time can be differently depending on one of these factors according to the particular fuel is gasified and the particular conditions are established inside the gasifier. The same analysis also led to the estimation of reaction zone volumes for each biomass fuel, so as a comparison among the dimensions of the differently fed gasification units was finally accomplished. Each biomass material showed a different volumes distribution, so that any dimensioned gasification unit does not seem to be suitable for more than one biomass species. Nevertheless, since reactors diameters were found out quite similar for all the examined materials, it could be envisaged to design a single units for all of them by adopting the largest diameter and by combining together the maximum heights of each reaction zone, as they were calculated for the different biomasses. A total height of gasifier as around 2400mm would be obtained in this case. Besides, by arranging air injecting nozzles at different levels along the reactor, gasification zone could be properly set up according to the particular material is in turn gasified. Finally, since gasification and pyrolysis times were found to considerably change according to even short temperature variations, it could be also envisaged to regulate air feeding rate for each gasified material (which process temperatures depend on), so as the available reactor volumes would be suitable for the complete development of solid conversion in each case, without even changing fluid dynamics behaviour of the unit as well as air/biomass ratio in noticeable measure. The second part of this work dealt with the gas cleaning systems to be adopted downstream the gasifiers in order to run high efficiency CHP units (i.e. internal engines and micro-turbines). Especially in the case multi–fuel gasifiers are assumed to be used, weightier gas cleaning lines need to be envisaged in order to reach the standard gas quality degree required to fuel cogeneration units. Indeed, as the more heterogeneous feed to the gasification unit, several contaminant species can simultaneously be present in the exit gas stream and, as a consequence, suitable gas cleaning systems have to be designed. In this work, an overall study on gas cleaning lines assessment is carried out. Differently from the other research efforts carried out in the same field, the main scope is to define general arrangements for gas cleaning lines suitable to remove several contaminants from the gas stream, independently on the feedstock material and the energy plant size The gas contaminant species taken into account in this analysis were: particulate, tars, sulphur (in H2S form), alkali metals, nitrogen (in NH3 form) and acid gases (in HCl form). For each of these species, alternative cleaning devices were designed according to three different plant sizes, respectively corresponding with 8Nm3/h, 125Nm3/h and 350Nm3/h gas flows. Their performances were examined on the basis of their optimal working conditions (efficiency, temperature and pressure drops, above all) and their own consumption of energy and materials. Successively, the designed units were combined together in different overall gas cleaning line arrangements, paths, by following some technical constraints which were mainly determined from the same performance analysis on the cleaning units and from the presumable synergic effects by contaminants on the right working of some of them (filters clogging, catalysts deactivation, etc.). One of the main issues to be stated in paths design accomplishment was the tars removal from the gas stream, preventing filters plugging and/or line pipes clogging At this scope, a catalytic tars cracking unit was envisaged as the only solution to be adopted, and, therefore, a catalytic material which is able to work at relatively low temperatures was chosen. Nevertheless, a rapid drop in tars cracking efficiency was also estimated for this same material, so that an high frequency of catalysts regeneration and a consequent relevant air consumption for this operation were calculated in all of the cases. Other difficulties had to be overcome in the abatement of alkali metals, which condense at temperatures lower than tars, but they also need to be removed in the first sections of gas cleaning line in order to avoid corrosion of materials. In this case a dry scrubber technology was envisaged, by using the same fine particles filter units and by choosing for them corrosion resistant materials, like ceramic ones. Besides these two solutions which seem to be unavoidable in gas cleaning line design, high temperature gas cleaning lines were not possible to be achieved for the two larger plant sizes, as well. Indeed, as the use of temperature control devices was precluded in the adopted design procedure, ammonia partial oxidation units (as the only considered methods for the abatement of ammonia at high temperature) were not suitable for the large scale units, because of the high increase of reactors temperature by the exothermic reactions involved in the process. In spite of these limitations, yet, overall arrangements for each considered plant size were finally designed, so that the possibility to clean the gas up to the required standard degree was technically demonstrated, even in the case several contaminants are simultaneously present in the gas stream. Moreover, all the possible paths defined for the different plant sizes were compared each others on the basis of some defined operational parameters, among which total pressure drops, total energy losses, number of units and secondary materials consumption. On the basis of this analysis, dry gas cleaning methods proved preferable to the ones including water scrubber technology in al of the cases, especially because of the high water consumption provided by water scrubber units in ammonia adsorption process. This result is yet connected to the possibility to use activated carbon units for ammonia removal and Nahcolite adsorber for chloride acid. The very high efficiency of this latter material is also remarkable. Finally, as an estimation of the overall energy loss pertaining the gas cleaning process, the total enthalpy losses estimated for the three plant sizes were compared with the respective gas streams energy contents, these latter obtained on the basis of low heating value of gas only. This overall study on gas cleaning systems is thus proposed as an analytical tool by which different gas cleaning line configurations can be evaluated, according to the particular practical application they are adopted for and the size of cogeneration unit they are connected to.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Geochemical mapping is a valuable tool for the control of territory that can be used not only in the identification of mineral resources and geological, agricultural and forestry studies but also in the monitoring of natural resources by giving solutions to environmental and economic problems. Stream sediments are widely used in the sampling campaigns carried out by the world's governments and research groups for their characteristics of broad representativeness of rocks and soils, for ease of sampling and for the possibility to conduct very detailed sampling In this context, the environmental role of stream sediments provides a good basis for the implementation of environmental management measures, in fact the composition of river sediments is an important factor in understanding the complex dynamics that develop within catchment basins therefore they represent a critical environmental compartment: they can persistently incorporate pollutants after a process of contamination and release into the biosphere if the environmental conditions change. It is essential to determine whether the concentrations of certain elements, in particular heavy metals, can be the result of natural erosion of rocks containing high concentrations of specific elements or are generated as residues of human activities related to a certain study area. This PhD thesis aims to extract from an extensive database on stream sediments of the Romagna rivers the widest spectrum of informations. The study involved low and high order stream in the mountain and hilly area, but also the sediments of the floodplain area, where intensive agriculture is active. The geochemical signals recorded by the stream sediments will be interpreted in order to reconstruct the natural variability related to bedrock and soil contribution, the effects of the river dynamics, the anomalous sites, and with the calculation of background values be able to evaluate their level of degradation and predict the environmental risk.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To determine to what extent allogeneic hematopoietic stem-cell transplantation (alloHSCT) quantitatively reduces relapse in acute myeloid leukemia with monosomal karyotype (MK-AML) compared with alternative postremission therapy and how it compares with other cytogenetic subcategories.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis examines three questions regarding the content of Bucknell University‟s waste stream and the contributors to campus recycling and solid waste disposal. The first asks, “What does Bucknell‟s waste stream consist of?” To answer this question, I designed a campus-wide waste audit procedure that sampled one dumpster from each of the eleven „activity‟ types on campus in order to better understand Bucknell‟s waste composition. The audit was implemented during the Fall semester of the 2011-2012 school year. The waste from each dumpster was sorted into several recyclable and non-recyclable categories and then weighed individually. Results showed the Bison and Carpenter Shop dumpsters to contain the highest percentage of divertible materials (through recycling and/or composting). When extrapolated, results also showed the Dining Services buildings and Facilities buildings to be the most waste dense in terms of pounds of waste generated per square foot. The Bison also generated the most overall waste by weight. The average composition of all dumpsters revealed that organic waste composed 24% of all waste, 23% was non-recyclable paper, and 20% was non-recyclable plastic. It will be important to move forward using these results to help create effective waste programs that target the appropriate areas of concern. My second question asks, “What influences waste behavior to contribute to this „picture‟ of the waste stream?” To answer this question, I created a survey that was sent out to randomly selected sub-group of the university‟s three constituencies: students, faculty, and staff. The survey sought responses regarding each constituency‟s solid waste disposal and recycling behavior, attitudes toward recycling, and motivating factors for solid waste disposal behaviors across different sectors of the university. Using regression analysis, I found three statistically significant motivating factors that influence solid waste disposal behavior: knowledge and awareness, moral value, and social norms. I further examined how a person‟s characteristics associate to these motivating factors and found that one‟s position on campus proved a significant association. Consistently, faculty and staff were strongly influenced by the aforementioned motivating factors, while students‟ behavior was less influenced by them. This suggests that new waste programs should target students to help increase the influence of these motivators to improve the recycling rate and lower overall solid waste disposal on campus. After making overall conclusions regarding the waste audit and survey, I ask my third question, which inquires, “What actions can Bucknell take to increase recycling rates and decrease solid waste generation?” Bucknell currently features several recycling and waste minimization programs on campus. However, using results from the waste audit and campus survey, we can better understand what are the issues of the waste stream, how do we go about addressing these issues, and who needs to be addressed. I propose several suggestions for projects that future students may take on for summer or thesis research. Suggestions include targeting the appropriate categories of waste that occur most frequently in the waste stream, as well as the building types that have the highest waste density and potential recovery rates. Additionally, certain groups on campus should be targeted more directly than others, namely the student body, which demonstrates the lowest influence by motivators of recycling and waste behavior. Several variables were identified as significant motivators of waste and recycling behavior, and could be used as program tactics to encourage more effective behavior.

Relevância:

40.00% 40.00%

Publicador: