471 resultados para tryptophan catabolites
Resumo:
Circular dichroism (CD), fourier transform infrared (FTIR), and fluorescence spectroscopy were used to explore the effect of dimethyl sulfoxide (DMSO) on the structure and function of hemoglobin (Hb). The native tertiary structure was disrupted completely when the concentration of DMSO reached 50% (v/v), which was determined by loss of the characteristic Soret CD spectrum. Loss of the native tertiary structure could be mainly caused by breaking the hydrogen bonds, between the heme propionate groups and nearby surface amino acid residues, and by disorganizing the hydrophobic interior of this protein. Upon exposure of Hb to 52% DMSO for ca. 12 h in a D2O medium no significant change in 1652 cm(-1) band of the FTIR spectrum was produced, which demonstrated that alpha-helical structure predominated. When the concentration of DMSO increased to 57%: (1) the band at 1652 cm(-1) disappeared with the appearance of two new bands located at 1661 and 1648 cm(-1); (2) another new band at 1623 cm(-1) was attributed to the formation of intermolecular beta-sheet or aggregation, which was the direct consequence of breaking of the polypeptide chain by the competition of S=O groups in DMSO with C=O groups in amide bonds. Further increasing the DMSO concentration to 80%, the intensity at 1623 cm(-1) increased, and the bands at 1684, 1661 and 1648 cm(-1) shifted to 1688, 1664 and 1644 cm(-1), respectively. These changes showed that the native secondary structure of Hb was last and led to further aggregation and increase of the content of 'free' amide C=O groups. In pure DMSO solvent, the major band at 1664 cm(-1) indicated that almost all of both the intermolecular beta-sheet and any residual secondary structure were completely disrupted. The red shift of the fluorescence emission maxima showed that the tryptophan residues were exposed to a greater hydrophilic environment as the DMSO content increased. GO-binding experiment suggested that the biological function of Hb was disrupted seriously even if the content of DMSO was 20%. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Synchronous fluorescence spectra of cytochrome c solutions were studied. It was found that synchronous fluorescence spectra of tyrosine and tryptophan residues in cytochrome c molecules can be separated using different wavelength intervals. The changes in synchronous fluorescence spectra of cytochrome c solutions with the solution pH are different from that of free tyrosine and tryptophan and reflect the pH-induced conformational transitions of cytochrome c molecules. (C) 1995 Academic Press, Inc.
Resumo:
The states of cytochrome C molecules in aquous solution were studied with synchronous fluorescence spectroscopy, It was found that the synchronous fluorescent spectra of cytochrome C were contributed by tyrosine and tryptophan residues separately at Delta lambda = 20 nm and Delta lambda = 80 nm, The peak position in synchronous fluorescent spectra of tyrosine residues in cytochrome C molecule does not change with its concentration, but that of tryptophan residue changes with its concentration, Only one peak at 340.0 nm was observed in the dilute solution of cytochrome C, With increasing the concentration of cytochrome C, a new peak at 304. 0 nm appeared. The peak at 340.0 nm disappeared and only one peak at 304.0 nm was observed at a higher concentration of cytochrome C, It may originate from the change of aggregation states of cytochrome C molecules and it was considered that the peak at 340.0 nm was attributed to the monomer and peak at 304.0 nm was due to the dimmer or oligomers. When urea was added into cytochrome C solution in which both monomer and dimmer or oligomers exist, cytochrome C molecules do not denature in the range of the specific concentrations of urea. The concentration of monomer of cytochrome C molecules increased and that of aggregation slates decreased by adding urea, Therefore, the synchronous fluorescence spectroscopy can be used to identify monomer and aggregation states of cytochrome C molecules.
Resumo:
本文通过胶州湾围隔实验、微藻培养实验研究了海洋微藻产生溶解有机物的三维荧光特性,并初步利用经验正交函数对三维荧光光谱图进行了主成分分析,通过东海取样研究了东海荧光溶解有机物的时空分布特征,并对荧光溶解有机物的来源进行了分析。得到了一些初步结论: 胶州湾围隔实验中不同营养盐培养结果表明浮游植物可产生类蛋白和类腐殖质荧光,类蛋白荧光峰由类酪氨酸(tyrosine-like)荧光峰和类色氨酸(tryptophan-like)荧光峰组成,主要位置为Exmax/Emmax=270nm/290~310nm,Exmax/Emmax= 270~290/320~350的荧光峰强度比较弱;在Exmax/Emmax=250~260/380~480nm(A峰)、Exmax/Emmax=310~320/380~420nm(C峰)和Exmax/Emmax=330~350/420~480nm(M峰)位置均出现零散的类腐殖质荧光峰,其中以A峰为主。类酪氨酸荧光强度明显高于类腐殖质荧光强度。浮游植物量降低时,类酪氨酸荧光强度与叶绿素a浓度呈明显的负相关。硅藻和甲藻产生的类酪氨酸和类色氨酸荧光强度之间具有较好的相关性,两者来源相似, 并且甲藻与硅藻相比能够产生更多的类蛋白荧光物质。不同环境下类腐殖质混合物的组分比例不同,甲藻生长环境下相对于硅藻具有较低的A:C比值。 在实验室培养中肋骨条藻(Skeletonema costatum)、塔玛亚历山大藻(Alexandrium tamarense)、微小亚历山大藻(Alexandrium mimutum)、锥状斯氏藻(Scrippsiella trochoidea)、东海原甲藻(Prorocentrum donghaiense)及海洋原甲藻(Prorocentrum micans)的实验结果表明,微藻在生长过程中产生出荧光溶解有机物,中肋骨条藻为代表的硅藻主要产生类腐殖质荧光物质,而甲藻在指数增长期主要产生类蛋白荧光物质。进入消亡期后类蛋白荧光和类腐殖质荧光强度迅速增大,原因可能是衰老、死亡藻细胞的破碎释放出大量的荧光有机物质所致,此外还有细菌对非荧光有机物进一步降解。塔玛亚历山大藻、微小亚历山大藻、东海原甲藻及海洋原甲藻的类蛋白荧光强度在消亡后期由于细菌降解或光降解等因素而降低。同属微藻产生的荧光物质相似,例如塔玛亚历山大藻与微小亚历山藻、东海原甲藻与海洋原甲藻,但具体荧光峰位置有所不同。利用经验正交函数能够对三维荧光光谱谱图进行主成份分析。 在利用三维荧光光谱法研究长江口海域台风前后不同站位荧光溶解有机物荧光特性及分布特征的结果表明,长江口海区主要的荧光溶解有机物荧光峰为T峰、S峰和A峰。风前和风后的类色氨酸分别来源于相似物质。风前,在表层浮游植物能够产生类蛋白荧光物质,而底层类蛋白荧光物质不受浮游植物的影响,长江冲淡水能够带来部分类蛋白荧光物质;表层的类腐殖质不受浮游植物的影响,而底层的浮游植物在降解过程中能够产生一部分类腐殖质,并且长江冲淡水对表层和底层的类腐殖质来源均有很大贡献。风后,表层的类色氨酸与叶绿素a浓度不呈相关性,而底层却呈正相关,另外表层和底层的类色氨酸均受到长江冲淡水的影响;表层和底层的类腐殖质与叶绿素a均没有相关性,但受陆源影响显著,长江冲淡水能带来类腐殖质。
Resumo:
Filtration and cross-flow ultrafiltration techniques were used to separate culture media of Prorocentrum donghaiense at the exponential growth, stationary and decline stages into < 0.45 mu m filtrate, 100 kDa-0.45 mu m, 10-100 kDa and 1-10 kDa retentate and < 1 kDa ultrafiltrate fractions. The fluorescence. properties of different molecular weights of dissolved organic matter (DOM) were measured by excitation-emission matrix spectra. Protein-like and humic-like fluorophores were observed in the DOM produced by P. donghaiense. The central positions of protein-like fluorophores showed a red shift with prolonged growth duration, shifting from tyrosine-like properties at the exponential growth stage to tryptophan-like properties at the stationary and decline stages. The excitation wavelengths of protein-like fluorophores exhibited some change in the exponential growth and stationary stages with increased molecular size, but showed little change in the decline stage. However, the emission wavelengths in the decline stage exhibited a blue shift. Very distinct C type and A type peaks in humic-like fluorophores were observed. With a prolonged culture time, the intensities of both of the peaks became strong and the excitation wavelengths of peak A showed a red shift, while the A:C ratios fell. More than 94% of fluorescent DOM was in the lower than 1 kDa molecular weight fraction.
Resumo:
Fluorescence excitation-emission spectroscopy (EEMS) was employed to analyze the 3-dimensional fluorescence of dissolved organic matter in the East China Sea after diatom red tide dispersion. The relationships between fluorescence peak intensity, and salinity and chlorophyll-a were discussed. The centers of protein-like fluorescence peaks dispersed at Ex(max)/Em(max) = 270-280/290-315 nm (Peak B), 220-230/290-305 nm (Peak D), 230-240/335-350 nm(Peak S)and 280/320 nm(Peak T). Two humic-like peaks appeared at 255-270/435-480 nm (Peak A) and 330-350/420-480 nm(Peak C). High tyrosine-like intensity was observed in diatom red tide dispersion area, and tryptophan-like fluorescence was also found which was lower. High FIB/FIS showed that diatom red tide produced much tyrosine-like matter during dispersion. Peaks S, A and C had positive correlation with one another, and their distributions were similar, which decreased with distance increasing away from the shore. Good negative correlations between peaks S, A and C and salinity suggested that Jiangsu-Zhejiang coastal water was the same source of then-L Correlations between fluorescence peak intensity and chlorophyll-a were not remarkable enough to clear the relationship between fluorescence and living algal matter. It was supposed that the living algal matter contributed little to the fluorescence intensity of algal dispersion seawater.
Resumo:
A novel method of synthesizing protein chiral stationary phase (protein-CSP) is proposed with 2,4,6-trichloro-1,3,5-triazine as the activator. The bovine serum albumin (BSA) based chiral columns (150x4.6 mm I.D.) were prepared successfully within 8 h. With tryptophan as the probe solute, it was observed that the BSA immobilized by this method had a better ability to distinguish enantiomers than that activated by glutaric dialdehyde. This may be due to the well-maintained BSA conformation and the larger amount of BSA immobilized on the silica gel. The BSA-CSP prepared by this method was relatively stable under experimental conditions, and the resolution of 13 chiral compounds was achieved. The coupling reaction in this method is mild, reliable and reproducible; it is also suitable for the immobilization of various biopolymers in the preparation of bioreactor, biosensor and affinity chromatography columns. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Maria Roca, Caron James, Adriana Pruzinsk?, Stefan H?rtensteiner, Howard Thomas and Helen Ougham. Analysis of the chlorophyll catabolism pathway in leaves of an introgression senescence mutant of Lolium temulentum. Phytochemistry, 65 (9), 1231-1238. Sponsorship: BBSRC RAE2008
Resumo:
The past two decades have seen substantial gains in our understanding of the complex processes underlying disturbed brain-gut communication in disorders such as irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Despite a growing understanding of the neurobiology of brain-gut axis dysfunction, there is a relative paucity of investigations into how the various factors involved in dysregulating the brain-gut axis, including stress, immune activation and pain, could impact on fundamental brain processes such as cognitive performance. To this end, we proposed a cognitive neurobiology of brain-gut axis dysfunction and took a novel approach to examine how disturbed brain-gut interactions may manifest as altered cognitive performance in IBS and IBD, both cross-sectionally and prospectively. We have demonstrated that, disorders of the brain-gut axis are characterised by stable deficits in specific cognitive domains. Specifically, patients with IBS exhibit a consistent hippocampal mediated visuospatial memory impairment. In addition we have found evidence to suggest a similar visuospatial impairment in IBD. However, our most consistent finding within this population was that patients with Crohn’s disease exhibit impaired selective attention/ response inhibition on the classic Stroop interference test. These cognitive deficits may serve to perpetuate and sustain brain-gut axis dysfunction. Furthermore, this research has shed light on some of the underlying neurobiological mechanisms that may be mediating cognitive dysfunction in IBS. Our findings may have significant implications for the individual who suffers from a brain-gut axis disorder and may also inform future treatment strategies. Taken together, these findings can be incorporated into existing neurobiological models of brain-gut axis dysfunction, to develop a more comprehensive model accounting for the cognitive-neurobiology of brain-gut axis disorders. This has furthered our understanding of disease pathophysiology and may ultimately aid in both the diagnosis and treatment of these highly prevalent, but poorly understood disorders.
Resumo:
Understanding the interconversion between thermodynamically distinguishable states present in a protein folding pathway provides not only the kinetics and energetics of protein folding but also insights into the functional roles of these states in biological systems. The protein component of the bacterial RNase P holoenzyme from Bacillus subtilis (P protein) was previously shown to be unfolded in the absence of its cognate RNA or other anionic ligands. P protein was used in this study as a model system to explore general features of intrinsically disordered protein (IDP) folding mechanisms. The use of trimethylamine N-oxide (TMAO), an osmolyte that stabilizes the unliganded folded form of the protein, enabled us to study the folding process of P protein in the absence of ligand. Transient stopped-flow kinetic traces at various final TMAO concentrations exhibited multiphasic kinetics. Equilibrium "cotitration" experiments were performed using both TMAO and urea during the titration to produce a urea-TMAO titration surface of P protein. Both kinetic and equilibrium studies show evidence of a previously undetected intermediate state in the P protein folding process. The intermediate state is significantly populated, and the folding rate constants are relatively slow compared to those of intrinsically folded proteins similar in size and topology. The experiments and analysis described serve as a useful example for mechanistic folding studies of other IDPs.
Resumo:
BACKGROUND: Serotonin is a neurotransmitter that has been linked to a wide variety of behaviors including feeding and body-weight regulation, social hierarchies, aggression and suicidality, obsessive compulsive disorder, alcoholism, anxiety, and affective disorders. Full understanding of serotonergic systems in the central nervous system involves genomics, neurochemistry, electrophysiology, and behavior. Though associations have been found between functions at these different levels, in most cases the causal mechanisms are unknown. The scientific issues are daunting but important for human health because of the use of selective serotonin reuptake inhibitors and other pharmacological agents to treat disorders in the serotonergic signaling system. METHODS: We construct a mathematical model of serotonin synthesis, release, and reuptake in a single serotonergic neuron terminal. The model includes the effects of autoreceptors, the transport of tryptophan into the terminal, and the metabolism of serotonin, as well as the dependence of release on the firing rate. The model is based on real physiology determined experimentally and is compared to experimental data. RESULTS: We compare the variations in serotonin and dopamine synthesis due to meals and find that dopamine synthesis is insensitive to the availability of tyrosine but serotonin synthesis is sensitive to the availability of tryptophan. We conduct in silico experiments on the clearance of extracellular serotonin, normally and in the presence of fluoxetine, and compare to experimental data. We study the effects of various polymorphisms in the genes for the serotonin transporter and for tryptophan hydroxylase on synthesis, release, and reuptake. We find that, because of the homeostatic feedback mechanisms of the autoreceptors, the polymorphisms have smaller effects than one expects. We compute the expected steady concentrations of serotonin transporter knockout mice and compare to experimental data. Finally, we study how the properties of the the serotonin transporter and the autoreceptors give rise to the time courses of extracellular serotonin in various projection regions after a dose of fluoxetine. CONCLUSIONS: Serotonergic systems must respond robustly to important biological signals, while at the same time maintaining homeostasis in the face of normal biological fluctuations in inputs, expression levels, and firing rates. This is accomplished through the cooperative effect of many different homeostatic mechanisms including special properties of the serotonin transporters and the serotonin autoreceptors. Many difficult questions remain in order to fully understand how serotonin biochemistry affects serotonin electrophysiology and vice versa, and how both are changed in the presence of selective serotonin reuptake inhibitors. Mathematical models are useful tools for investigating some of these questions.
Resumo:
Maximakinin is an N-terminally extended bradykinin (DLPKINRKGPRPPGFSPFR) from the venom of a Chinese toad (Bombina maxima) that displays highly selective activity at mammalian arterial smooth muscle receptors. In this study, we report that incubation of maximakinin with either kallikrein or human saliva generates catabolites with enhanced bioactivity that retain the tissue selective effects of the parent molecule. In addition, we have observed that kallikrein rapidly cleaves the C-terminal arginyl residue of both maximakinin and bradykinin – a cleavage hitherto considered to be performed by a carboxypeptidase that facilitates selective bradykinin receptor targeting. Maximakinin has thus evolved as a `smart' defensive weapon in the toad with inherent resistance to the signal-terminating protease hardware in the potential predator. Thus, natural selection of amphibian skin peptides for antipredator defence, through interspecies delivery by an exogenous secretory mode, produces subtle structural stabilization modifications that can potentially provide new insights for the design of orally active and selectively targeted peptide therapeutics.
Resumo:
Bradykinin and related peptides are found in the defensive skin secretions of many frogs and toads. While the physiological roles of bradykinin-related peptides in sub-mammalian vertebrates remains obscure, in mammals, including humans, canonical bradykinin mediates a multitude of biological effects including the proliferation of many types of cancer cell. Here we have examined the effect of the bradykinin B2 receptor antagonist peptide, kinestatin, originally isolated by our group from the skin secretion of the giant fire-bellied toad, Bombina maxima, on the proliferation of the human prostate cancer cell lines, PC3, DU175 and LnCAP. The bradykinin receptor status of all cell lines investigated was established through PCR amplification of transcripts encoding both B1 and B2 receptor subtypes. Following this demonstration, all cell lines were grown in the presence or absence of kinestatin and several additional bradykinin receptor antagonists of amphibian skin origin and the effects on proliferation of the cell lines was investigated using the MTT assay and by counting of the cells in individual wells of 96-well plates. All of the amphibian skin secretion-derived bradykinin receptor antagonists inhibited proliferation of all of the prostate cancer lines investigated in a dose-dependent manner. In addition, following incubation of peptides with each cell line and analysis of catabolites by mass spectrometry, it was found that bradykinin was highly labile and each antagonist was highly stable under the conditions employed. Bradykinin signalling pathways are thus worthy of further investigation in human prostate cancer cell lines and the evidence presented here would suggest the testing of efficacy in animal models of prostate cancer as a positive outcome could lead to a drug development programme for the treatment of this disease.
Resumo:
The binding of drugs to plasma proteins – especially serum albumin – is an important factor in controlling the availability and distribution of these drugs. In this study we have investigated the binding of two drugs commonly used to treat liver fluke infections, albendazole (ABZ) and triclabendazole (TCBZ), and their sulphoxide metabolites to bovine serum albumin (BSA). Both ABZ and TCBZ caused shifts in the mobility of BSA in native gel electrophoresis. No such changes were observed with the sulphoxides under identical conditions. The drugs, and their sulphoxides, caused quenching of the intrinsic tryptophan fluorescence of BSA, indicating association between the drugs and this protein. Quantification of this quenching suggested a 5–10-fold reduction in affinity of the sulphoxides compared to the parent compounds. These results are discussed in respect to previous work on the pharmacodynamics of these fasciolicides and will inform the design of novel anthelmintics.
Resumo:
In this study we report for the first time the comprehensive inhibitor profiling of the Proteus mirabilis metalloprotease virulence factor, ZapA (mirabilysin) using a 160 compound focused library of N-alpha mercaptoamide dipeptides, in order to map the S1´ and S2´ binding site preferences of this important enzyme. This study has revealed a preference for the aromatic residues tyrosine and tryptophan in P1´ and aliphatic residues in P2´. From this library, six compounds were identified which exhibited sub- to low micromolar Ki values. The most potent inactivator, SH-CO2-Y-V-NH2 was capable of preventing ZapA-mediated hydrolysis of heat denatured IgA, indicating these inhibitors may be capable of protecting host proteins against ZapA during colonisation and infection.