547 resultados para trigeminal ganglion
Resumo:
L-PGlu-(2-proPyl)-L-His-L-ProNH(2) (NP-647) is a CNS active thyrotropin-releasing hormone (TRH) analog with potential application in various CNS disorders including seizures. In the present study, mechanism of action for protective effect of NP-647 was explored by studying role of NP-647 on epileptiform activity and sodium channels by using patch-clamp methods. Epileptiform activity was induced in subicular pyramidal neurons of hippocampal slice of rat by perfusing 4-aminopyridine (4-AP) containing Mg(+2)-free normal artificial cerebrospinal fluid (nACSF). Increase in mean firing frequency was observed after perfusion of 4-AP and zero Mg(+2) (2.10+/-0.47 Hz) as compared with nACSF (0.12+/-0.08 Hz). A significant decrease in mean firing frequency (0.61+/-0.22 Hz), mean frequency of epileptiform events (0.03+/-0.02 Hz vs. 0.22+/-0.05 Hz of 4-AP+0 Mg), and average number of action potentials in paroxysmal depolarization shift-burst (2.54+/-1.21 Hz vs. 8.16+/-0.88 Hz of 4-AP +0 Mg) was observed. A significant reduction in peak dV/dt (246+/-19 mV ms(-1) vs. 297 18 mV ms-1 of 4-AP+0 Mg) and increase (1.332+/-0.018 ms vs. 1.292+/-0.019 ms of 4-AP+0 Mg) in time required to reach maximum depolarization were observed indicating role of sodium channels. Concentration-dependent depression of sodium current was observed after exposure to dorsal root ganglion neurons to NP-647. NP-647 at different concentrations (1, 3, and 10 mu M) depressed sodium current (15+/-0.5%, 50+/-2.6%, and 75+/-0.7%, respectively). However, NP-647 did not show change in the peak sodium current in CNa18 cells. Results of present study demonstrated potential of NP-647 in the inhibition of epileptiform activity by inhibiting sodium channels indirectly. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
This commentary highlights the effectiveness of optoelectronic properties of polymer semiconductors based on recent results emerging from our laboratory, where these materials are explored as artificial receptors for interfacing with the visual systems. Organic semiconductors based polymer layers in contact with physiological media exhibit interesting photophysical features, which mimic certain natural photoreceptors, including those in the retina. The availability of such optoelectronic materials opens up a gateway to utilize these structures as neuronal interfaces for stimulating retinal ganglion cells. In a recently reported work entitled ``A polymer optoelectronic interface provides visual cues to a blind retina,'' we utilized a specific configuration of a polymer semiconductor device structure to elicit neuronal activity in a blind retina upon photoexcitation. The elicited neuronal signals were found to have several features that followed the optoelectronic response of the polymer film. More importantly, the polymer-induced retinal response resembled the natural response of the retina to photoexcitation. These observations open up a promising material alternative for artificial retina applications.
Resumo:
The structure of a new cysteine framework (-C-CC-C-C-C) ``M''-superfamily conotoxin, Mo3964, shows it to have a beta-sandwich structure that is stabilized by inter-sheet cross disulfide bonds. Mo3964 decreases outward K+ currents in rat dorsal root ganglion neurons and increases the reversal potential of the Na(V)1.2 channels. The structure of Mo3964 (PDB ID: 2MW7) is constructed from the disulfide connectivity pattern, i.e., 1-3, 2-5, and 4-6, that is hitherto undescribed for the ``M''-superfamily conotoxins. The tertiary structural fold has not been described for any of the known conus peptides. NOE (549), dihedral angle (84), and hydrogen bond (28) restraints, obtained by measurement of (h3)J(NC') scalar couplings, were used as input for structure calculation. The ensemble of structures showed a backbone root mean square deviation of 0.68 +/- 0.18 angstrom, with 87% and 13% of the backbone dihedral (phi, psi) angles lying in the most favored and additional allowed regions of the Ramachandran map. The conotoxin Mo3964 represents a new bioactive peptide fold that is stabilized by disulfide bonds and adds to the existing repertoire of scaffolds that can be used to design stable bioactive peptide molecules.
Resumo:
227 págs.
Resumo:
The degeneration of the outer retina usually causes blindness by affecting the photoreceptor cells. However, the ganglion cells, which consist of optic nerves, on the middle and inner retina layers are often intact. The retinal implant, which can partially restore vision by electrical stimulation, soon becomes a focus for research. Although many groups worldwide have spent a lot of effort on building devices for retinal implant, current state-of-the-art technologies still lack a reliable packaging scheme for devices with desirable high-density multi-channel features. Wireless flexible retinal implants have always been the ultimate goal for retinal prosthesis. In this dissertation, the reliable packaging scheme for a wireless flexible parylene-based retinal implants has been well developed. It can not only provide stable electrical and mechanical connections to the high-density multi-channel (1000+ channels on 5 mm × 5 mm chip area) IC chips, but also survive for more than 10 years in the human body with corrosive fluids.
The device is based on a parylene-metal-parylene sandwich structure. In which, the adhesion between the parylene layers and the metals embedded in the parylene layers have been studied. Integration technology for high-density multi-channel IC chips has also been addressed and tested with dummy and real 268-channel and 1024-channel retinal IC chips. In addition, different protection schemes have been tried in application to IC chips and discrete components to gain the longest lifetime. The effectiveness has been confirmed by the accelerated and active lifetime soaking test in saline solution. Surgical mockups have also been designed and successfully implanted inside dog's and pig's eyes. Additionally, the electrodes used to stimulate the ganglion cells have been modified to lower the interface impedance and shaped to better fit the retina. Finally, all the developed technologies have been applied on the final device with a dual-metal-layer structure.
Resumo:
The applicability of the white-noise method to the identification of a nonlinear system is investigated. Subsequently, the method is applied to certain vertebrate retinal neuronal systems and nonlinear, dynamic transfer functions are derived which describe quantitatively the information transformations starting with the light-pattern stimulus and culminating in the ganglion response which constitutes the visually-derived input to the brain. The retina of the catfish, Ictalurus punctatus, is used for the experiments.
The Wiener formulation of the white-noise theory is shown to be impractical and difficult to apply to a physical system. A different formulation based on crosscorrelation techniques is shown to be applicable to a wide range of physical systems provided certain considerations are taken into account. These considerations include the time-invariancy of the system, an optimum choice of the white-noise input bandwidth, nonlinearities that allow a representation in terms of a small number of characterizing kernels, the memory of the system and the temporal length of the characterizing experiment. Error analysis of the kernel estimates is made taking into account various sources of error such as noise at the input and output, bandwidth of white-noise input and the truncation of the gaussian by the apparatus.
Nonlinear transfer functions are obtained, as sets of kernels, for several neuronal systems: Light → Receptors, Light → Horizontal, Horizontal → Ganglion, Light → Ganglion and Light → ERG. The derived models can predict, with reasonable accuracy, the system response to any input. Comparison of model and physical system performance showed close agreement for a great number of tests, the most stringent of which is comparison of their responses to a white-noise input. Other tests include step and sine responses and power spectra.
Many functional traits are revealed by these models. Some are: (a) the receptor and horizontal cell systems are nearly linear (small signal) with certain "small" nonlinearities, and become faster (latency-wise and frequency-response-wise) at higher intensity levels, (b) all ganglion systems are nonlinear (half-wave rectification), (c) the receptive field center to ganglion system is slower (latency-wise and frequency-response-wise) than the periphery to ganglion system, (d) the lateral (eccentric) ganglion systems are just as fast (latency and frequency response) as the concentric ones, (e) (bipolar response) = (input from receptors) - (input from horizontal cell), (f) receptive field center and periphery exert an antagonistic influence on the ganglion response, (g) implications about the origin of ERG, and many others.
An analytical solution is obtained for the spatial distribution of potential in the S-space, which fits very well experimental data. Different synaptic mechanisms of excitation for the external and internal horizontal cells are implied.
Resumo:
Assembling a nervous system requires exquisite specificity in the construction of neuronal connectivity. One method by which such specificity is implemented is the presence of chemical cues within the tissues, differentiating one region from another, and the presence of receptors for those cues on the surface of neurons and their axons that are navigating within this cellular environment.
Connections from one part of the nervous system to another often take the form of a topographic mapping. One widely studied model system that involves such a mapping is the vertebrate retinotectal projection-the set of connections between the eye and the optic tectum of the midbrain, which is the primary visual center in non-mammals and is homologous to the superior colliculus in mammals. In this projection the two-dimensional surface of the retina is mapped smoothly onto the two-dimensional surface of the tectum, such that light from neighboring points in visual space excites neighboring cells in the brain. This mapping is implemented at least in part via differential chemical cues in different regions of the tectum.
The Eph family of receptor tyrosine kinases and their cell-surface ligands, the ephrins, have been implicated in a wide variety of processes, generally involving cellular movement in response to extracellular cues. In particular, they possess expression patterns-i.e., complementary gradients of receptor in retina and ligand in tectum- and in vitro and in vivo activities and phenotypes-i.e., repulsive guidance of axons and defective mapping in mutants, respectively-consistent with the long-sought retinotectal chemical mapping cues.
The tadpole of Xenopus laevis, the South African clawed frog, is advantageous for in vivo retinotectal studies because of its transparency and manipulability. However, neither the expression patterns nor the retinotectal roles of these proteins have been well characterized in this system. We report here comprehensive descriptions in swimming stage tadpoles of the messenger RNA expression patterns of eleven known Xenopus Eph and ephrin genes, including xephrin-A3, which is novel, and xEphB2, whose expression pattern has not previously been published in detail. We also report the results of in vivo protein injection perturbation studies on Xenopus retinotectal topography, which were negative, and of in vitro axonal guidance assays, which suggest a previously unrecognized attractive activity of ephrins at low concentrations on retinal ganglion cell axons. This raises the possibility that these axons find their correct targets in part by seeking out a preferred concentration of ligands appropriate to their individual receptor expression levels, rather than by being repelled to greater or lesser degrees by the ephrins but attracted by some as-yet-unknown cue(s).
Resumo:
O objetivo do presente trabalho é comparar, do ponto de vista elétrico, a membrana do neurônio ganglionar com a da célula de neuroblastoma, analisando os efeitos das cargas fixas sobre o potencial elétrico nas superfícies da bicamada lipídica e também sobre o comportamento do perfil de potencial através da membrana, considerando as condiçõesfísico-químicas do estado de repouso e do estado de potencial de ação. As condições para a ocorrência dos referidos estados foram baseadas em valores numéricos de parâmetros elétricos e químicos, característicos dessas células, obtidos na literatura. O neurônio ganglionar exemplifica um neurônio sadio, e a célula de neuroblastoma, que é uma célula tumoral, exemplifica um neurônio patológico, alterado por esta condição. O neuroblastoma é um tumor que se origina das células da crista neural (neuroblastos), que é uma estrutura embrionária que dá origem a muitas partes do sistema nervoso, podendo surgir em diversos locais do organismo, desde a região do crânio até a área mais inferior da coluna. O modelo adotado para simular a membrana de neurônio inclui: (a) as distribuições espaciais de cargas elétricas fixas no glicocálix e na rede de proteínas citoplasmáticas; (b) as distribuições de cargas na solução eletrolítica dos meios externo e interno; e (c) as cargas superficiais da bicamada lipídica. Os resultados que obtivemos mostraram que, nos estados de repouso e de ação, os potenciais superficiais da bicamada interno (ÁSbc) e externo (ÁSgb) da célula de neuroblastoma não sofrem alteração mensurável, quando a densidade de carga na superfície interna (QSbc) torna-se 50 vezes mais negativa, tanto para uma densidade de carga na superfície externa da bicamada nula (QSgb = 0), como para um valor de QSgb 6= 0. Porém, no estado de repouso, uma leve queda em ÁSbc do neur^onio ganglionar pode ser observada com este nível de variação de carga, sendo que ÁSgb do neurônio ganglionar é mais negativo quando QSgb = 1=1100 e/A2. No estado de ação, para QSgb = 0, o aumento da negatividade de QSbc não provoca alteração detectável de ÁSbc e ÁSgb para os dois neurônios. Quando consideramos QSgb = 1=1100 e/A2, ÁSgb do neurônio ganglionar se torna mais negativo, não se observando variações detectáveis nos potenciais superficiais da célula de neuroblastoma. Tanto no repouso quanto no estado de ação, ÁSgb das duas células não sofre variação sensível com o aumento da negatividade da carga fixa distribuída espacialmente no citoplasma. Já a ÁSbc sofre uma queda gradativa nos dois tipos celulares; porém, no estado de ação, esta queda é mais rápida. Descobrimos diferenças importantes nos perfis de potencial das duas células, especialmente na região do glicocálix.
Resumo:
This investigation has resulted in the chemical identification and isolation of the egg-laying hormone from Aplysia californica, Aplysia vaccaria, and Aplysia dactylomela. The hormone, which was originally identified as the Bag Cell-Specific protein (BCS protein) on polyacrylamide gels, is a polypeptide of molecular weight ≈ 6000, which is localized in the neurosecretory bag cells of the parietovisceral ganglion and the surrounding connective tissue sheath which contains the bag cell axons. All three species produce a hormone of similar molecular weight, but varying electrophoretic mobility as determined on polyacrylamide gels. As tested, the hormone is completely cross-reactive among the three species.
Although the bag cells of sexually immature animals contain the active hormone, sexual maturation of the animal results in a 10-fold increase in the BCS protein content of these neurons.
A seasonal variation in the BCS protein content was also observed, with 150 times more hormone contained in the bag cells of Aplysia californica in August than in January. This correlates well with the variation in the animals' ability to lay eggs throughout the year (Strumwasser et al., 1969). There are some indications that the receptivity of the animal to the available hormone also fluctuates during the year, being lower in winter than in swmner. The seasonal rhythm of the other species, Aplysia vaccaria and Aplysia dactylomela, has not been investigated.
A polyacrylamide gel electrophoresis analysis of water-soluble proteins in Aplysia californica revealed several other nerve-specific proteins. One of these is also located in the bag cell somas and stains turquoise with Amido Schwarz. The function of this protein has not been investigated.
Resumo:
De los diferentes tipos celulares que forman la retina unos de los más importantes son las células ganglionares (RGCs, del inglés Retinal Ganglion Cells), que son las neuronas que se encargan de transmitir la información visual desde el ojo hasta los centros visuales del cerebro. En este trabajo se pretende determinar el efecto del tiempo de cultivo en la supervivencia de las RGCs,y en la extensión y número de sus neuritas. También se pretende caracterizar un subtipo de RGCs, las RGCs que expresan el fotopigmento melanopsina.
Resumo:
:探索以Lentivirus为载体,构建同时表达绿色荧光蛋白(GFP)和神经营养因子一3(NT一3)的基因工程化鼠胚神经于细胞(NSC)的可行性。方法:体外分离培养鼠胚NSC,用同时携带NT一3和GFP的lentivirus转染构建工程化NSC;用荧光显微镜、鼠胚背根神经结培养(Dorsal Root Ganglion,DRG)、Westem blot等方法检测基因工程NSC 的转基因表达。结果:荧光显微镜观察到几乎100%的工程化NSC表达GFP:DRG培养和Westem blot检测到基因工程化NSC能高效分泌NT一3蛋白。结论:以IJentivirus为载体,构建同时携带并稳定表达GFP和N‘r_3的基因工程化鼠胚NSC是可行的,可为脊髓损伤基础研究提供有价值的细胞资源。
Resumo:
目的:探索以Lentivirus为载体,构建同时携带并表达多基因的基因工程人胚神经干细胞(hum an neu鄄ral stem cell,hNSC)的可行性,为脊髓损伤治疗的研究提供材料。方法:培养和鉴定hNSC;用携带绿色荧光蛋白(green fluorescence protein,GFP)和神经营养因子-3(neurotrophic factor-3,NT-3)的Lentivirus转染hNSC;用荧光显微镜观察、鼠胚背根神经结培养(dorsal root ganglion,DRG)和Slot blot等方法检测基因工程hNSC的多基因表达情况。结果:培养获得了大量的hNSC;荧光显微镜观察到几乎100%的hNSC表达GFP;基因工程hNSC的培养液能促使大鼠DRG旺盛生长;Slot blot检测到基因工程hNSC能高效分泌NT-3蛋白。结论:以Lentivirus为载体能构建同时携带并稳定表达多基因的基因工程hNSC,为脊髓损伤治疗的基础研究及进一步临床应用提供了有价值的细胞资源。
Resumo:
Peripheral nerve damage is a problem encountered after trauma and during surgery and the development of synthetic polymer conduits may offer a promising alternative to autografts. In order to improve the performance of the polymer to be used for nerve conduits, poly-ε-caprolactone (PCL) films were chemically functionalized with RGD moieties, using a chemical reaction previously developed. In vitro cultures of dissociated dorsal root ganglion (DRG) neurons provide a valid model to study different factors affecting axonal growth. In this work, DRG neurons were cultured on RGD-functionalized PCL films. Adult adipose-derived stem cells differentiated to Schwann cells (dASCs) were initially cultured on the functionalized PCL films, resulting in improved attachment and proliferation. dASCs were also co-cultured with DRG neurons on treated and untreated PCL to assess stimulation by dASCs on neurite outgrowth. Neuron response was generally poor on untreated PCL films, but long neurites were observed in the presence of dASCs or RGD moieties. A combination of the two factors enhanced even further neurite outgrowth, acting synergistically. Finally, in order to better understand the extracellular matrix (ECM)-cell interaction, a β1 integrin blocking experiment was carried out. Neurite outgrowth was not affected by the specific antibody blocking, showing that β1 integrin function can be compensated by other molecules present on the cell membrane. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
Catecholamines regulate several physiological processes in mollusks. Many pharmacological experiments have been conducted to determine the effects of adrenergic agonist and antagonist of catecholamine receptors on Meretrix meretrix metamorphosis. Results showed that adrenaline (AD) and noradrenaline (NA) had substantial effects (p < 0.05) on larval metamorphosis at concentrations ranging from 10 mu M to 100 mu M. 10 mu M beta-adrenergic receptor (AR) agonist isoproterenol showed the same inducement effect as that of NA and AD on metamorphosis, whereas the alpha-AR agonist phenylephrine had no significant effect at concentrations between 0.1 mu M and 100 mu M concentrations (p > 0.05). Furthermore, I mu M beta-AR antagonist propanolol, but not alpha-AR antagonist prazosin, depressed the larval metamorphosis induced by NA or AD. By immunocytochemistry, two cell bodies of beta-adrenergic-like receptor, C/A1, C/A2, were observed in the cerebral/apical ganglion of competent larvae. In addition, there were other immunoreactive dots near C/A1 and C/A2. The results of pharmacology and immunocytochemistry suggests that beta-adrenergic-like receptor located in the larval CNS, might play a considerable role in the larval metamorphosis of M meretrix by AD or NA. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Vision plays an important role in the living habits of animals, especially in feeding. We investigated the postnatal development of retina in root vole Microtus oeconornus. The result shows that the retina of the M. oeconornus is very primitive before postnatal day (PD) 3. The neuroblastic layer does not differentiate and makes up more than half of the retina layer. The outer plexiform layer (OPL) first comes into existence at PDS. At PD6, as the presence of the OPL becomes obvious, the outer nuclear layer (ONL) and inner nuclear layer (INL) are much clearer. At PD18, the retina is similar to an adult retina and each layer becomes distinct. The thickness and cell density of the ganglion cell layer (GCL) and ONL during different postnatal days were also examined. These results show that the thickness and density of ONL increase during ontogeny, while the thickness and density of GCL decrease. Compared with Rattus norvegicus, Apodemus agrarius , Cricetulus triton, Microtus mandarinus , Myospalax cansus , Spermophilus dauricus and Sciurotamias davidianus, the histological structure of the retina of M. oeconornus is between that of nocturnal and diurnal rodents.