979 resultados para time-resolved spectrum
Resumo:
A laser-based technique for printing transparent and weakly absorbing liquids is developed. Its principle of operation relies in the tight focusing of short laser pulses inside the liquid and close to its free surface, in such a way that the laser radiation is absorbed in a tiny volume around the beam waist, with practically no absorption in any other location along the beam path. If the absorbed energy overcomes the optical breakdown threshold, a cavitation bubble is generated, and its expansion results in the propulsion of a small fraction of liquid which can be collected on a substrate, leading to the printing of a microdroplet for each laser pulse. The technique does not require the preparation of the liquid in thin film form, and its forward mode of operation imposes no restriction concerning the optical properties of the substrate. These characteristics make it well suited for printing a wide variety of materials of interest in diverse applications. We demonstrate that the film-free laser forward printing technique is capable of printing microdroplets with good resolution, reproducibility and control, and analyze the influence of the main process parameter, laser pulse energy. The mechanisms of liquid printing are also investigated: time-resolved imaging provides a clear picture of the dynamics of liquid transfer which allows understanding the main features observed in the printed droplets.
Resumo:
Understanding the oxidative reactivity of nanoparticles (NPs; <100 nm) could substantially contribute to explaining their toxicity. We attempted to refine the use of 2′7-dichlorodihydrofluorescein (DCFH) to characterize NP generation of reactive oxygen species (ROS). Several fluorescent probes have been applied to testing oxidative reactivity, but despite DCFH being one of the most popular for the detection of ROS, when it has been applied to NPs there have been an unexplainably wide variability in results. Without a uniform methodology, validating even robust results is impossible. This study, therefore, identified sources of conflicting results and investigated ways of reducing occurrence of artificial results. Existing techniques were tested and combined (using their most desirable features) to form a more reliable method for the measurement of NP reactivity in aqueous dispersions. We also investigated suitable sample ranges necessary to determine generation of ROS. Specifically, ultrafiltration and time-resolved scan absorbance spectra were used to study possible optical interference when using high sample concentrations. Robust results were achieved at a 5 µM DCFH working solution with 0.5 unit/mL horseradish peroxidase (HRP) dissolved in ethanol. Sonication in DCFH-HRP working solution provided more stable data with a relatively clean background. Optimal particle concentration depends on the type of NP and in general was in the µg/mL range. Major reasons for previously reported conflicting results due to interference were different experimental approaches and NP sample concentrations. The protocol presented here could form the basis of a standardized method for applying DCFH to detect generation of ROS by NPs.
Resumo:
We previously demonstrated the synergistic therapeutic effect of the cetuximab (anti-epidermal growth factor receptor [EGFR] monoclonal antibody, mAb)-trastuzumab (anti-HER2 mAb) combination (2mAbs therapy) in HER2(low) human pancreatic carcinoma xenografts. Here, we compared the 2mAbs therapy, the erlotinib (EGFR tyrosine kinase inhibitor [TKI])-trastuzumab combination and lapatinib alone (dual HER2/EGFR TKI) and explored their possible mechanisms of action. The effects on tumor growth and animal survival of the three therapies were assessed in nude mice xenografted with the human pancreatic carcinoma cell lines Capan-1 and BxPC-3. After therapy, EGFR and HER2 expression and AKT phosphorylation in tumor cells were analyzed by Western blot analysis. EGFR/HER2 heterodimerization was quantified in BxPC-3 cells by time-resolved FRET. In K-ras-mutated Capan-1 xenografts, the 2mAbs therapy gave significantly higher inhibition of tumor growth than the erlotinib/trastuzumab combination, whereas in BxPC-3 (wild-type K-ras) xenografts, the erlotinib/trastuzumab combination showed similar growth inhibition but fewer tumor-free mice. Lapatinib showed no antitumor effect in both types of xenografts. The efficacy of the 2mAbs therapy was partly Fc-independent because F(ab')(2) fragments of the two mAbs significantly inhibited BxPC-3 growth, although with a time-limited therapeutic effect. The 2mAbs therapy was associated with a reduction of EGFR and HER2 expression and AKT phosphorylation. BxPC-3 cells preincubated with the two mAbs showed 50% less EGFR/HER2 heterodimers than controls. In pancreatic carcinoma xenografts, the 2mAbs therapy is more effective than treatments involving dual EGFR/HER2 TKIs. The mechanism of action may involve decreased AKT phosphorylation and/or disruption of EGFR/HER2 heterodimerization.
Resumo:
Electrically driven Er3+ doped Si slot waveguides emitting at 1530 nm are demonstrated. Two different Er3+ doped active layers were fabricated in the slot region: a pure SiO2 and a Si-rich oxide. Pulsed polarization driving of the waveguides was used to characterize the time response of the electroluminescence (EL) and of the signal probe transmission in 1 mm long waveguides. Injected carrier absorption losses modulate the EL signal and, since the carrier lifetime is much smaller than that of Er3+ ions, a sharp EL peak was observed when the polarization was switched off. A time-resolved electrical pump & probe measurement in combination with lock-in amplifier techniques allowed to quantify the injected carrier absorption losses. We found an extinction ratio of 6 dB, passive propagation losses of about 4 dB/mm, and a spectral bandwidth > 25 nm at an effective d.c. power consumption of 120 μW. All these performances suggest the usage of these devices as electro-optical modulators.
Resumo:
The structural and optical properties of three different kinds of GaAs nanowires with 100% zinc-blende structure and with an average of 30% and 70% wurtzite are presented. A variety of shorter and longer segments of zinc-blende or wurtzite crystal phases are observed by transmission electron microscopy in the nanowires. Sharp photoluminescence lines are observed with emission energies tuned from 1.515 eV down to 1.43 eV when the percentage of wurtzite is increased. The downward shift of the emission peaks can be understood by carrier confinement at the interfaces, in quantum wells and in random short period superlattices existent in these nanowires, assuming a staggered band offset between wurtzite and zinc-blende GaAs. The latter is confirmed also by time-resolved measurements. The extremely local nature of these optical transitions is evidenced also by cathodoluminescence measurements. Raman spectroscopy on single wires shows different strain conditions, depending on the wurtzite content which affects also the band alignments. Finally, the occurrence of the two crystallographic phases is discussed in thermodynamic terms.
Resumo:
Streptavidin, a tetrameric protein secreted by Streptomyces avidinii, binds tightly to a small growth factor biotin. One of the numerous applications of this high-affinity system comprises the streptavidin-coated surfaces of bioanalytical assays which serve as universal binders for straightforward immobilization of any biotinylated molecule. Proteins can be immobilized with a lower risk of denaturation using streptavidin-biotin technology in contrast to direct passive adsorption. The purpose of this study was to characterize the properties and effects of streptavidin-coated binding surfaces on the performance of solid-phase immunoassays and to investigate the contributions of surface modifications. Various characterization tools and methods established in the study enabled the convenient monitoring and binding capacity determination of streptavidin-coated surfaces. The schematic modeling of the monolayer surface and the quantification of adsorbed streptavidin disclosed the possibilities and the limits of passive adsorption. The defined yield of 250 ng/cm2 represented approximately 65 % coverage compared with a modelled complete monolayer, which is consistent with theoretical surface models. Modifications such as polymerization and chemical activation of streptavidin resulted in a close to 10-fold increase in the biotin-binding densities of the surface compared with the regular streptavidin coating. In addition, the stability of the surface against leaching was improved by chemical modification. The increased binding densities and capacities enabled wider high-end dynamic ranges in the solid-phase immunoassays, especially when using the fragments of the capture antibodies instead of intact antibodies for the binding of the antigen. The binding capacity of the streptavidin surface was not, by definition, predictive of the low-end performance of the immunoassays nor the assay sensitivity. Other features such as non-specific binding, variation and leaching turned out to be more relevant. The immunoassays that use a direct surface readout measurement of time-resolved fluorescence from a washed surface are dependent on the density of the labeled antibodies in a defined area on the surface. The binding surface was condensed into a spot by coating streptavidin in liquid droplets into special microtiter wells holding a small circular indentation at the bottom. The condensed binding area enabled a denser packing of the labeled antibodies on the surface. This resulted in a 5 - 6-fold increase in the signal-to-background ratios and an equivalent improvement in the detection limits of the solid-phase immunoassays. This work proved that the properties of the streptavidin-coated surfaces can be modified and that the defined properties of the streptavidin-based immunocapture surfaces contribute to the performance of heterogeneous immunoassays.
Resumo:
Gadolinium oxyortho-silicate, Gd2SiO5, presents a monoclinic structure with two crystallographic sites in which Gd3+ ions are equally distributed with coordination numbers CN, 7 and 9, respectively. By doping this host with Er3+ it is possible to distinguish and attribute the two sites by means of lifetime determination of the 4S3/2 state, (in this case, Er3+ substitutes Gd3+ ions). Samples doped with 0.1 and 5.0% molar Er3+ were prepared by solid state reaction and characterized by X-ray Diffractometry, Vibrational and Electronic Absorption Spectroscopies, and Time Resolved Photoluminescence. Based on the experimental results, it is possible to verify that, for the 5,0% doped sample, the lifetime value of the 4S3/2 state of the erbium ion inserted in site 1, (CN = 9), is 2.7 ± 0.1 mus, and for the one inserted in site 2, (CN = 7), it is 1.5 ± 0.1 mus.
Resumo:
The central goal of food safety policy in the European Union (EU) is to protect consumer health by guaranteeing a high level of food safety throughout the food chain. This goal can in part be achieved by testing foodstuffs for the presence of various chemical and biological hazards. The aim of this study was to facilitate food safety testing by providing rapid and user-friendly methods for the detection of particular food-related hazards. Heterogeneous competitive time-resolved fluoroimmunoassays were developed for the detection of selected veterinary residues, that is coccidiostat residues, in eggs and chicken liver. After a simplified sample preparation procedure, the immunoassays were performed either in manual format with dissociation-enhanced measurement or in automated format with pre-dried assay reagents and surface measurement. Although the assays were primarily designed for screening purposes providing only qualitative results, they could also be used in a quantitative mode. All the developed assays had good performance characteristics enabling reliable screening of samples at concentration levels required by the authorities. A novel polymerase chain reaction (PCR)-based assay system was developed for the detection of Salmonella spp. in food. The sample preparation included a short non-selective pre-enrichment step, after which the target cells were collected with immunomagnetic beads and applied to PCR reaction vessels containing all the reagents required for the assay in dry form. The homogeneous PCR assay was performed with a novel instrument platform, GenomEra™, and the qualitative assay results were automatically interpreted based on end-point time-resolved fluorescence measurements and cut-off values. The assay was validated using various food matrices spiked with sub-lethally injured Salmonella cells at levels of 1-10 colony forming units (CFU)/25 g of food. The main advantage of the system was the exceptionally short time to result; the entire process starting from the pre-enrichment and ending with the PCR result could be completed in eight hours. In conclusion, molecular methods using state-of-the-art assay techniques were developed for food safety testing. The combination of time-resolved fluorescence detection and ready-to-use reagents enabled sensitive assays easily amenable to automation. Consequently, together with the simplified sample preparation, these methods could prove to be applicable in routine testing.
Resumo:
In this work, the energy transfer by dipole-dipole interaction between cationic dyes in n-alcohols (methanol, ethanol, 1-propanol and 1-butanol) is studied by time resolved and steady state fluorescence measurements. The critical radii of energy transfer were determined by three independent methods; the spectral overlap, fluorescence decay profiles, and relative intensity measurements. In all solvents, R0 values of the dye pairs obtained from spectral overlap were between 40 to 90 Å. Steady state and time resolved fluorescence measurements resulted in values of R0 in the range of 50 - 80 Å, with good correlation of values.
Resumo:
Photodegradation of the PAHs anthracene, chrysene and benzo[k]fluoranthane on silica gel impregnated with TiO2 and over glass plates holding TiO2 was studied. Silica gel plates holding these substances were exposed to solar radiation, developed with hexane and photographed under ultra-violet light. The plates containing benzo[k]fluoranthene were also analysed by both diffuse reflectance and laser induced fluorescence. Diffuse reflectance spectra of the fluorescent spot from non irradiated plates showed small differences when compared with those obtained from irradiated plates. These spectral differences are compatible with formation of less conjugated compounds during irradiation. Fluorescence and time resolved fluorescence spectra observed after irradiation were identical to those obtained with benzo[k]fluoranthene in methanol. On plates holding silica, PAH degradation requires longer periods of solar irradiation when compared with those plates containing silica impregnated with TiO2. Glass plates impregnated with TiO2 also showed very rapid PAH degradation.
Resumo:
The preparation of [FeIV(O)(MePy2tacn)]2+ (2, MePy2tacn = N-methyl-N,N-bis(2-picolyl)-1,4,7-triazacyclononane) by reaction of [FeII(MePy2tacn)(solvent)]2+ (1) and PhIO in CH3CN and its full characterization are described. This compound can also be prepared photochemically from its iron(II) precursor by irradiation at 447 nm in the presence of catalytic amounts of [Ru II(bpy)3]2+ as photosensitizer and a sacrificial electron acceptor (Na2S2O8). Remarkably, the rate of the reaction of the photochemically prepared compound 2 toward sulfides increases 150-fold under irradiation, and 2 is partially regenerated after the sulfide has been consumed; hence, the process can be repeated several times. The origin of this rate enhancement has been established by studying the reaction of chemically generated compound 2 with sulfides under different conditions, which demonstrated that both light and [Ru II(bpy)3]2+ are necessary for the observed increase in the reaction rate. A combination of nanosecond time-resolved absorption spectroscopy with laser pulse excitation and other mechanistic studies has led to the conclusion that an electron transfer mechanism is the most plausible explanation for the observed rate enhancement. According to this mechanism, the in-situ-generated [RuIII(bpy)3] 3+ oxidizes the sulfide to form the corresponding radical cation, which is eventually oxidized by 2 to the corresponding sulfoxide
Resumo:
In recent years, one important objective of cardiovascular research has been to find new markers that would improve the risk stratification and diagnosis of patients presenting with symptoms of acute coronary syndrome (ACS). Pregnancy-associated plasma protein A (PAPP-A) is a large metalloproteinase involved in insulin-like growth factor signalling. It is expressed in various tissues and seems to be involved in many physiological and pathological processes, such as folliculogenesis, bone formation, wound healing, pregnancy and atherosclerosis. The aim of this thesis was to investigate PAPP-A in ACS patients. Circulating concentrations of PAPP-A had been previously shown to be elevated in ACS. In this study it was revealed that the form of PAPP-A causing this elevation was the free noncomplexed PAPP-A. Thus, the form of PAPP-A in the circulation of ACS patients differed from the complexed PAPP-A form abundantly present in the circulation during pregnancy. A point-of-care method based on time-resolved immunofluorometric assays was developed, which enabled the rapid detection of free PAPP-A. The method was found to perform well with serum and heparin plasma samples as well as with heparinized whole blood samples. With this method the concentrations of free PAPP-A in healthy individuals were shown to be negligible. When the clinical performance of the method was evaluated with serum samples from ACS patients, it was shown that the free PAPP-A concentration in the admission sample was an independent predictor of myocardial infarction and death. Moreover, as a prognostic marker, free PAPP-A was revealed to be superior to total PAPPA, i.e. the combination of free and complexed PAPP-A, which has been measured by the other groups in this field. As heparin products are widely used as medication in ACS patients, the effect of heparin products on free PAPP-A molecule and circulating concentrations were also investigated in this study. It was shown that intravenous administration of low molecular weight or unfractionated heparin elicits a rapid release of free PAPP-A into the circulation in haemodialysis patients and patients undergoing angiography. Moreover, the interaction between PAPP-A and heparin was confirmed in gel filtration studies. Importantly, the patients included in the clinical evaluation of the free PAPP-A detection method developed had not received any heparin product medication before the admission sample and thus the results were not affected by the heparin effect. In conclusion, free PAPP-A was identified as a novel marker associated with ACS. The point-of-care methods developed enable rapid detection of this molecule which predicts adverse outcome when measured in the admission sample of ACS patients. However, the effect revealed of heparin products on circulating PAPP-A concentrations should be acknowledged when further studies are conducted related to free or total PAPP-A in ACS.
Resumo:
The product of catalytic activity of the enzyme phospholipase A2, which resembles the core unit of animal toxins, on phospholipids is a 1:1 mixture of lysolipid and fatty acid. This mixture was studied by time-resolved simultaneous small- and wide angle x-ray diffraction over the temperature range from 23 to 53.5ºC. An unusually large lamellar structure was observed, with d = 11 nm, contradicting the complex functional dimer model between lysolipid and fatty acid. It can be explained by formation of a "double-bilayer", a new phase consisting of two different bilayers, one formed by lysophospholipid and other by fatty acid, bound together by head group interactions. Its strucutre was confirmed by simulations of the X-ray scattering pattern.
Resumo:
The drug discovery process is facing new challenges in the evaluation process of the lead compounds as the number of new compounds synthesized is increasing. The potentiality of test compounds is most frequently assayed through the binding of the test compound to the target molecule or receptor, or measuring functional secondary effects caused by the test compound in the target model cells, tissues or organism. Modern homogeneous high-throughput-screening (HTS) assays for purified estrogen receptors (ER) utilize various luminescence based detection methods. Fluorescence polarization (FP) is a standard method for ER ligand binding assay. It was used to demonstrate the performance of two-photon excitation of fluorescence (TPFE) vs. the conventional one-photon excitation method. As result, the TPFE method showed improved dynamics and was found to be comparable with the conventional method. It also held potential for efficient miniaturization. Other luminescence based ER assays utilize energy transfer from a long-lifetime luminescent label e.g. lanthanide chelates (Eu, Tb) to a prompt luminescent label, the signal being read in a time-resolved mode. As an alternative to this method, a new single-label (Eu) time-resolved detection method was developed, based on the quenching of the label by a soluble quencher molecule when displaced from the receptor to the solution phase by an unlabeled competing ligand. The new method was paralleled with the standard FP method. It was shown to yield comparable results with the FP method and found to hold a significantly higher signal-tobackground ratio than FP. Cell-based functional assays for determining the extent of cell surface adhesion molecule (CAM) expression combined with microscopy analysis of the target molecules would provide improved information content, compared to an expression level assay alone. In this work, immune response was simulated by exposing endothelial cells to cytokine stimulation and the resulting increase in the level of adhesion molecule expression was analyzed on fixed cells by means of immunocytochemistry utilizing specific long-lifetime luminophore labeled antibodies against chosen adhesion molecules. Results showed that the method was capable of use in amulti-parametric assay for protein expression levels of several CAMs simultaneously, combined with analysis of the cellular localization of the chosen adhesion molecules through time-resolved luminescence microscopy inspection.
Resumo:
Lanthanides represent the chemical elements from lanthanum to lutetium. They intrinsically exhibit some very exciting photophysical properties, which can be further enhanced by incorporating the lanthanide ion into organic or inorganic sensitizing structures. A very popular approach is to conjugate the lanthanide ion to an organic chromophore structure forming lanthanide chelates. Another approach, which has quickly gained interest, is to incorporate the lanthanide ions into nanoparticle structures, thus attaining improved specific activity and binding capacity. The lanthanide-based reporters usually express strong luminescence emission, multiple narrow emission lines covering a wide wavelength range, and exceptionally long excited state lifetimes enabling timeresolved detection. Because of these properties, the lanthanide-based reporters have found widespread applications in various fields of life. This study focuses on the field of bioanalytical applications. The aim of the study was to demonstrate the utility of different lanthanide-based reporters in homogeneous Förster resonance energy transfer (FRET)-based bioaffinity assays. Several different model assays were constructed. One was a competitive bioaffinity assay that utilized energy transfer from lanthanide chelate donors to fluorescent protein acceptors. In addition to the conventional FRET phenomenon, a recently discovered non-overlapping FRET (nFRET) phenomenon was demonstrated for the first time for fluorescent proteins. The lack of spectral overlap in the nFRET mechanism provides sensitivity and versatility to energy transfer-based assays. The distance and temperature dependence of these phenomena were further studied in a DNA-hybridization assay. The distance dependence of nFRET deviated from that of FRET, and unlike FRET, nFRET demonstrated clear temperature dependence. Based on these results, a possible excitation mechanism operating in nFRET was proposed. In the study, two enzyme activity assays for caspase-3 were also constructed. One of these was a fluorescence quenching-based enzyme activity assay that utilized novel inorganic particulate reporters called upconverting phosphors (UCPs) as donors. The use of UCPs enabled the construction of a simple, rather inexpensive, and easily automated assay format that had a high throughput rate. The other enzyme activity assay took advantage of another novel reporter class, the lanthanidebinding peptides (LBPs). In this assay, energy was transferred from a LBP to a green fluorescent protein (GFP). Using the LBPs it was possible to avoid the rather laborious, often poorly repeatable, and randomly positioned chemical labeling. In most of the constructed assays, time-resolved detection was used to eliminate the interfering background signal caused by autofluorescence. The improved signal-to-background ratios resulted in increased assay sensitivity, often unobtainable in homogeneous assay formats using conventional organic fluorophores. The anti-Stokes luminescence of the UCPs, however, enabled the elimination of autofluorescence even without time-gating, thus simplifying the instrument setup. Together, the studied reporters and assay formats pave the way for increasingly sensitive, simple, and easily automated bioanalytical applications.