820 resultados para time delay in teleoperation
Resumo:
The evolution of the global orientation parameter for a series of aqueous hydroxypropylcellulose solutions both during and following the cessation of a steady-state shear flow is reported. Time-resolved orientation measurements were made in situ through a novel X-ray rheometer coupled with a two-dimensional electronic X-ray camera, and using an intense X-ray source at the LURE synchrotron. After the cessation of flow, the global orientation decreases from the steady-state orientation level to zero following shear flow at low shear rate or to a small but finite value after flow at a high shear rate. The decrease of orientation with time shows different behaviour, dependent upon the previously applied shear rate.
Resumo:
Wireless local area networks (WLANs) based on the IEEE 802.11 standard are now widespread. Most are used to provide access for mobile devices to a conventional wired infrastructure, and some are used where wires are not possible, forming an ad hoc network of their own. There are several varieties at the physical or radio layer (802.11, 802.11a, 802.11b, 802.11g), with each featuring different data rates, modulation schemes and transmission frequencies. However, all of them share a common medium access control (MAC) layer. As this is largely based on a contention approach, it does not allow prioritising of traffic or stations, so it cannot easily provide the quality of service (QoS) required by time-sensitive applications, such as voice or video transmission. In order to address this shortfall of the technology, the IEEE set up a task group that is aiming to enhance the MAC layer protocol so that it can provide QoS. The latest draft at the time of writing is Draft 11, dated October 2004. The article describes the yet-to-be-ratified 802.11e standard and is based on that draft.
Resumo:
Peat soils consist of poorly decomposed plant detritus, preserved by low decay rates, and deep peat deposits are globally significant stores in the carbon cycle. High water tables and low soil temperatures are commonly held to be the primary reasons for low peat decay rates. However, recent studies suggest a thermodynamic limit to peat decay, whereby the slow turnover of peat soil pore water may lead to high concentrations of phenols and dissolved inorganic carbon. In sufficient concentrations, these chemicals may slow or even halt microbial respiration, providing a negative feedback to peat decay. We document the analysis of a simple, one-dimensional theoretical model of peatland pore water residence time distributions (RTDs). The model suggests that broader, thicker peatlands may be more resilient to rapid decay caused by climate change because of slow pore water turnover in deep layers. Even shallow peat deposits may also be resilient to rapid decay if rainfall rates are low. However, the model suggests that even thick peatlands may be vulnerable to rapid decay under prolonged high rainfall rates, which may act to flush pore water with fresh rainwater. We also used the model to illustrate a particular limitation of the diplotelmic (i.e., acrotelm and catotelm) model of peatland structure. Model peatlands of contrasting hydraulic structure exhibited identical water tables but contrasting RTDs. These scenarios would be treated identically by diplotelmic models, although the thermodynamic limit suggests contrasting decay regimes. We therefore conclude that the diplotelmic model be discarded in favor of model schemes that consider continuous variation in peat properties and processes.
Identifying time lags in the restoration of grassland butterfly communities: a multi-site assessment
Resumo:
Although grasslands are crucial habitats for European butterflies, large-scale declines in quality and area have devastated many species. Grassland restoration can contribute to the recovery of butterfly populations, although there is a paucity of information on the long-term effects of management. Using eight UK data sets (9-21 years), we investigate changes in restoration success for (1) arable reversion sites, were grassland was established on bare ground using seed mixtures, and (2) grassland enhancement sites, where degraded grasslands are restored by scrub removal followed by the re-instigation of cutting/grazing. We also assessed the importance of individual butterfly traits and ecological characteristics in determining colonisation times. Consistent increases in restoration success over time were seen for arable reversion sites, with the most rapid rates of increase in restoration success seen over the first 10 years. For grasslands enhancement there were no consistent increases in restoration success over time. Butterfly colonisation times were fastest for species with widespread host plants or where host plants established well during restoration. Low mobility butterfly species took longer to colonise. We show that arable reversion is an effective tool for the management of butterfly communities. We suggest that as restoration takes time to achieve, its use as a mitigation tool against future environmental change (i.e. by decreasing isolation in fragmented landscapes) needs to take into account such time lags.
Resumo:
We study a two-way relay network (TWRN), where distributed space-time codes are constructed across multiple relay terminals in an amplify-and-forward mode. Each relay transmits a scaled linear combination of its received symbols and their conjugates,with the scaling factor chosen based on automatic gain control. We consider equal power allocation (EPA) across the relays, as well as the optimal power allocation (OPA) strategy given access to instantaneous channel state information (CSI). For EPA, we derive an upper bound on the pairwise-error-probability (PEP), from which we prove that full diversity is achieved in TWRNs. This result is in contrast to one-way relay networks, in which case a maximum diversity order of only unity can be obtained. When instantaneous CSI is available at the relays, we show that the OPA which minimizes the conditional PEP of the worse link can be cast as a generalized linear fractional program, which can be solved efficiently using the Dinkelback-type procedure.We also prove that, if the sum-power of the relay terminals is constrained, then the OPA will activate at most two relays.
Resumo:
The worldwide spread of barley cultivation required adaptation to agricultural environments far distant from those found in its centre of domestication. An important component of this adaptation is the timing of flowering, achieved predominantly in response to day length and temperature. Here, we use a collection of cultivars, landraces and wild barley accessions to investigate the origins and distribution of allelic diversity at four major flowering time loci, mutations at which have been under selection during the spread of barley cultivation into Europe. Our findings suggest that while mutant alleles at the PPD-H1 and PPD-H2 photoperiod loci occurred pre-domestication, the mutant vernalization non-responsive alleles utilized in landraces and cultivars at the VRN-H1 and VRN-H2 loci occurred post-domestication. The transition from wild to cultivated barley is associated with a doubling in the number of observed multi-locus flowering-time haplotypes, suggesting that the resulting phenotypic variation has aided adaptation to cultivation in the diverse ecogeographic locations encountered. Despite the importance of early-flowering alleles during the domestication of barley in Europe, we show that novel VRN alleles associated with early flowering in wild barley have been lost in domesticates, highlighting the potential of wild germplasm as a source of novel allelic variation for agronomic traits.
Resumo:
Recent research into sea ice friction has focussed on ways to provide a model which maintains much of the clarity and simplicity of Amonton's law, yet also accounts for memory effects. One promising avenue of research has been to adapt the rate- and state- dependent models which are prevalent in rock friction. In such models it is assumed that there is some fixed critical slip displacement, which is effectively a measure of the displacement over which memory effects might be considered important. Here we show experimentally that a fixed critical slip displacement is not a valid assumption in ice friction, whereas a constant critical slip time appears to hold across a range of parameters and scales. As a simple rule of thumb, memory effects persist to a significant level for 10 s. We then discuss the implications of this finding for modelling sea ice friction and for our understanding of friction in general.
Resumo:
Aim To develop a brief, parent-completed instrument (‘ERIC’) for detection of cognitive delay in 10-24 month-olds born preterm, or with low birth weight, or with perinatal complications, and to establish its diagnostic properties. Method Scores were collected from parents of 317 children meeting ≥1 inclusion criteria (birth weight <1500g; gestational age <34 completed weeks; 5-minute Apgar <7; presence of hypoxic-ischemic encephalopathy) and meeting no exclusion criteria. Children were assessed for cognitive delay using a criterion score on the Bayley Scales of Infant and Toddler Development Cognitive Scale III1 <80. Items were retained according to their individual associations with delay. Sensitivity, specificity, Positive and Negative Predictive Values were estimated and a truncated ERIC was developed for use <14 months. Results ERIC detected 17 out of 18 delayed children in the sample, with 94.4% sensitivity (95% CI [confidence interval] 83.9-100%), 76.9% specificity (72.1-81.7%), 19.8% positive predictive value (11.4-28.2%); 99.6% negative predictive value (98.7-100%); 4.09 likelihood ratio positive; and 0.07 likelihood ratio negative; the associated Area under the Curve was .909 (.829-.960). Interpretation ERIC has potential value as a quickly-administered diagnostic instrument for the absence of early cognitive delay in preterm or premature infants of 10-24 months, and as a screen for cognitive delay. Further research may be needed before ERIC can be recommended for wide-scale use.
Resumo:
In visual tracking experiments, distributions of the relative phase be-tween target and tracer showed positive relative phase indicating that the tracer precedes the target position. We found a mode transition from the reactive to anticipatory mode. The proposed integrated model provides a framework to understand the antici-patory behaviour of human, focusing on the integration of visual and soma-tosensory information. The time delays in visual processing and somatosensory feedback are explicitly treated in the simultaneous differential equations. The anticipatory behaviour observed in the visual tracking experiments can be ex-plained by the feedforward term of target velocity, internal dynamics, and time delay in somatosensory feedback.
Resumo:
In this paper, we study jumps in commodity prices. Unlike assumed in existing models of commodity price dynamics, a simple analysis of the data reveals that the probability of tail events is not constant but depends on the time of the year, i.e. exhibits seasonality. We propose a stochastic volatility jump–diffusion model to capture this seasonal variation. Applying the Markov Chain Monte Carlo (MCMC) methodology, we estimate our model using 20 years of futures data from four different commodity markets. We find strong statistical evidence to suggest that our model with seasonal jump intensity outperforms models featuring a constant jump intensity. To demonstrate the practical relevance of our findings, we show that our model typically improves Value-at-Risk (VaR) forecasts.
Resumo:
Daytime fatigue and lack of sleep seem to increase throughout adolescent years. Several environmental, psychological, and biological factors have been associated with the development of sleep across adolescence. The aim of the present article is to summarize these factors and to give examples of various outcomes in sleep patterns among adolescents studied in different cultural settings. It is obvious from earlier work that many adolescents have displaced circadian rhythms and lack of adaptation to school hours due to an early school start or additional burdens for work. Several interventions have aimed to help the adaptation process by supporting sleep processes and changing scheduling, in this way promoting classroom alertness. In summary, adolescents worldwide shorten their sleep due to schoolwork hours and additional work, especially by disturbing their sleep due to circadian misalignment.
Nuclear magnetic resonance water relaxation time changes in bananas during ripening: a new mechanism
Resumo:
BACKGROUND: Nuclear magnetic resonance studies of banana fragments during ripening show an increase on the water transverse relaxation time (T(2)) and a decrease in water self-diffusion coefficient (D). As T(2) and D are normally directly correlated, we studied these two properties in intact bananas during ripening, in an attempt to rule out the effect of injury on the apparent discrepancies in the behavior of T(2) and D. RESULTS: The results show that injury in bananas causes a decrease in T(2) of the water in vacuoles (T(2vac)). They also show that T(2vac) increased and D decreased during ripening, ruling out the injury effect. To explain the apparent discrepancies, we propose a new hypothesis for the increase in T(2) values, based on the reduction of Fe(3+) ions to Fe(2+) by galacturonic acid, produced by the hydrolysis of pectin and a decrease in internal oxygen concentration during ripening. CONCLUSION: As injury alters T(2) values it is necessary to use intact bananas to study relaxation times during ripening. The novel interpretation for the increase in T(2vac) based on reduction of Fe(+3) and O(2) concentration is an alternative mechanism to that based on the hydrolysis of starch in amyloplasts. (C) 2010 Society of Chemical Industry